Enos Lake Water Quality Monitoring Program

2022 Annual Report

Prepared for: FW Enterprises Ltd. c/o Seacliff Properties 305-1788 West 5th Avenue Vancouver, BC V6J 1P2

Prepared by:

Thea Rodgers, B.Sc. BC Conservation Foundation #105-1885 Boxwood Road Nanaimo, BC V9S 5X9

Executive Summary

From February to November 2022, the British Columbia Conservation Foundation (BCCF) conducted water quality sampling in Enos Lake based on a monitoring schedule and sampling procedures outlined in the *Enos Lake Protection and Monitoring Program* (ELPMP). Data collection was completed by BCCF staff, with assistance from three community volunteers interested in the conservation and protection of the lake and its ecosystem.

In 2022, the ELPMP recommended adhering to the 5-year monitoring plan through an expanded protocol to include additional assessment of metals, hardness, PAHs in lake sediment, and *E. coli*. Water quality samples were collected five times in thirty days in February, once in May, five times in August, and once in November. This expanded sampling protocol was intended to allow for the examination of annual trends, a review of the monitoring program, and feedback for ongoing sustainable watershed management.

Results were sent to a professional limnologist for analysis and review. Results indicated that both chlorophyll-*a* and Total Phosphorous increased relative to 2019, 2020, and 2021, but were on par with results from 2017 and 2018. There have been no exceedances above the target value for chlorophyll-*a* since 2017. The majority (62.5%) of Total Phosphorous samples exceeded the target value of 12 μ g/L in May, August, and November 2022; as a result, the annual average was also above target for 2022. Total Iron exceeded chronic and acute targets at depth in August 2022, and Dissolved Copper may also have exceeded targets. Dissolved oxygen results met the target for the epilimnion (\geq 5 mg/L) in all months, but did not meet the target for the hypolimnion (\geq 2 mg/L) in May or August 2022. This also occurred from 2017 – 2021, and is considered a natural condition of Enos Lake. However, the severity of oxygen depletion in the hypolimnion has increased since 2017 and, concerningly, was noted to extend up into the thermocline in August of 2021 and 2022. The progression of hypoxia beyond the hypolimnion should be closely monitored, as late summer wind-induced mixing could result in fish die-offs which would threaten the red-listed Enos Lake stickleback species-pair in Enos Lake.

Per the recommendations of the ELPMP, water quality monitoring should continue annually until at least one-year post-build-out within the Enos Lake watershed, following the template provided in the ELPMP. Suggestions for data accuracy and improvement include continuing with a QA/QC program to increase confidence in field data collection methods and lab analysis (e.g. duplicate and field blank samples, YSI readings on ascent and descent of probes) and additional Secchi readings throughout the year. Additional parameters, such as Dissolved Organic Carbon in water and % organic carbon in sediment, should be collected in tandem with samples for metals and sediment PAHs in future.

Table of Contents

Background1
1.0 Introduction
2.0 Methods
2.1 Scope of Work
2.2 Data Collection
2.3 Analysis5
3.0 Results
3.1 Air temperature and precipitation6
3.2 In situ Field Parameters
3.3 Laboratory Samples10
3.4 Invasive Species & Wildlife Observations13
4.0 Discussion
4.1 Air temperature and precipitation21
4.2 In situ Field Parameters21
4.3 Laboratory Samples22
4.4 Invasive Species & Wildlife Observations24
5.0 Recommendations
References

Figure 1: Enos Lake sampling locations (PGL 2016)2
Figure 2: Mean daily air temperature and precipitation for the Qualicum Beach Airport, 2016-2022
(Environment Canada 2022)
Figure 3: Annual Secchi depth values, 2017-2022. X represents mean while horizontal bar represents median.8
Figure 4: Mean annual water temperature values (n=4 samples per year), 2017-20228
Figure 5: Stratified layer mean water temperatures for Enos Lake, 2017-2022. The light blue bar on the left is
the epilimnion, while the dark blue bar on the right is the hypolimnion9
Figure 6: Measured thermocline depths for Enos Lake, 2017-20229
Figure 7: Stratified layer mean dissolved oxygen concentrations for Enos Lake, 2017-2022. The light blue bar
on the left is the epilimnion, while the dark blue bar on the right is the hypolimnion. The light blue dashed line
the DO target for the epilimnion, while the red dashed line is the DO target for the hypolimnion10
Figure 8: Mean annual Total Phosphorous values, 2017-2022; red line is threshold target (12 μg/L)11
Figure 9: Mean annual Chlorophyll-a results for Enos Lake , 2017-202211
Figure 10: <i>E. coli</i> results for Enos Lake, 2017 & 202212
Figure 11: River otter swims in Enos Lake, February 15, 2022. Photo by Danny Swainson
Figure 12: Eagles gathering and bathing in Enos Lake, February 15, 2022. Photos by Danny Swainson

List of Tables

Table 1: Proposed ELPMP Monitoring Schedule for 2022 (PGL 2016)	3
Table 2: Summary of Water Quality Monitoring Targets for data collected in 2022 (PGL 2016)	6
Table 3: Mean monthly air temperature and precipitation for the Qualicum Beach Airport, Jun-Sep 2016-	-2022
(Environment Canada 2022)	7
Table 4: Summary of Laboratory Results (excluding metals and sediment) from Enos Lake 2022 Water Qu	Jality
Monitoring	15
Table 5: Summary of Metals results from Enos Lake 2022 Water Quality Monitoring	16
Table 6: Summary of Sediment PAH results from Enos Lake 2022 Water Quality Monitoring	20
Table 7: Summary of trophic status classification based on chlorophyll- <i>a</i> and total phosphorous	23

Background

An annual water quality monitoring program for Enos Lake was established in 2017 by the British Columbia Conservation Foundation (BCCF), per the management recommendations of the *Enos Lake Protection and Monitoring Plan* (ELPMP) (PGL 2016).

This report summarizes the monitoring of select chemical and physical water quality parameters to evaluate the seasonal water quality and productivity status of Enos Lake in 2022, for comparison with established water quality targets. A summary of five-year data trends was completed. This report also includes suggestions for reporting as outlined in the ELPMP, including:

- A summary of work performed (including dates, individuals, weather conditions, methods, QA/QC protocols, and any challenges encountered during the work).
- A presentation of the water quality results compared against targets in the ELPMP.
- A summary of preventative actions taken with respect to aquatic invasive species in the past year (e.g. signage, educational materials for residents or visitors, etc.).
- Any anecdotal observations related to Enos Lake ecology, including but not limited to aquatic invasive species.
- An interpretation of the results of the program for the past year, conducted by an experienced, qualified limnologist, provided in report form, including but not limited to input provided for stormwater management practices or new phases of construction (included as an appendix).
- Recommendations for augmentation to the program, if relevant.
- Laboratory certificates and raw data for the year, as appendices.

1.0 Introduction

Enos Lake is a small, relatively productive lake located on Vancouver Island's Nanoose peninsula (Fig. 1). The lake is approximately 18 ha and surrounded by nearby ponds and wetlands, supporting a wide diversity of birds and aquatic life. The lake is approximately 12 metres at its deepest point, and drains into Enos Creek via a weir established in 1956 at its north outlet (PGL 2016).

Enos Lake is most well-known for the presence of a unique benthic and limnetic stickleback species-pair, protected under the federal Species at Risk Act (SARA). The pair were designated as Threatened in 1988, then re-classified and split into two species, each listed as Endangered in 2002 and renewed in 2012 (Environment Canada 2011). Recent research has suggested the species pair is collapsing due to habitat changes caused by crayfish and/or changes in lake productivity (Taylor et al. 2006; Taylor & Piercey 2018).

Enos Lake undergoes thermal stratification in the summer months, resulting in a very warm surface water layer (epilimnion); this layer is separated from the cooler, deeper water (hypolimnion) by a narrow zone of rapid temperature change (thermocline). Solar radiation and wind movement at the water's surface work together to warm the uppermost layer. In contrast, the water at depth receives very little sunlight and remains cool and dark. Density differences prevent these two layers from mixing during the summer months.

From fall through early spring, as air temperatures drop and the amount of solar radiation decreases, the warm surface waters gradually cool and densify. Denser water settles down into the hypolimnion and initiates mixing throughout the entire water column, a process known as fall turnover. While Enos Lake occasionally receives thin ice cover during winter cold snaps, it typically does not freeze for extended periods of time.

Figure 1: Enos Lake sampling locations (PGL 2016).

2.1 Scope of Work

BCCF was contracted to conduct water quality sampling as described in the ELPMP (Table 1) in 2022. Sampling occurred quarterly and field crews consisted of one BCCF biologist with an additional volunteer or field technician. Water samples were collected from three depths at site SWMP-03 (Fig. 1), located at the deepest part of the lake. Sediment and surface *E. coli* water samples were also collected from site SWMP-04 and Modified SWMP-06 (Fig. 1). These sites were accessed by boat with a small electric motor; regular site SWMP-06 was not accessible in 2022 due to shallow water and submerged hazards.

					2022							
Parameter	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Dissolved Oxygen		F			F			F			F	
Temperature		F			F			F			F	
Redox potential		F			F			F			F	
pH		F			F			F			F	
Secchi Depth		F			F			F			F	
Chlorophyl a		L			L			L			L	
Phosphorhus		L			L			L			L	
E Coli								E				
Metals		Μ						Μ				
Hardness		М						Μ				
PAH								Р				
	L = Water F = 1m in	r sample f situ profil	rom three les from S	e depths a WMP-03	t SWMP-0	3						
Legend	E = Five s M = Five s	amples in samples ii	30 days, j n 30 days,	from SWN from SW	1P-03 and MP-03	any two s	ihoreline l	ocations.				
	P = Surfa	ce sedime	nt from S	WMP-03,	SWMP-06	and SWN	1P-04					

Table 1: Proposed ELPMP Monitoring Schedule for 2022 (PGL 2016).

2.2 Data Collection

FIELD EQUIPMENT

The following equipment was utilized for field sampling:

- YSI Professional Plus QUATTRO handheld multi-parameter water quality sonde with probes for Galvanic Dissolved Oxygen, Temperature/Conductivity, pH, and ORP (with calibration solutions)
- 1 L Van Dorn water sampler
- Ekman sediment sampler, loaned from the Ministry of Environment (Nanaimo BC)
- Sample bottles, supplied by ALS Laboratories (Burnaby, BC)
- Chain of Custody (COC) forms, supplied by ALS Laboratories
- Cooler with ice, shipping labels and packing tape
- Secchi disk
- Field notebook
- Safety kit (First Aid, waders, gloves, Personal Flotation Devices (PFDs))
- 10-ft Zodiac with an electric outboard motor, anchor and oars

IN SITU FIELD PARAMETERS

In situ water quality parameters were collected once per quarter, beginning in February at site SWMP-03. The YSI handheld sonde probes measuring Dissolved Oxygen, pH, Specific Conductivity and ORP were calibrated by a BCCF technician immediately prior to each sampling date, and calibration records kept for reference. Probes were replaced if calibration results indicated deviation from standard Good Laboratory Practice (GLP) values. Results were recorded at 1 m intervals throughout the water column, down to approximately 10-12 m (total site depth). An occasional reading was taken every 0.5 m in the thermocline during cases of a steep temperature transition. Parameters measured included:

- Temperature (°C)
- Dissolved oxygen (mg/L and %)
- pH
- Specific Conductivity (µS/cm)
- Redox potential (mV)

Weather and surface observations were noted, and a water clarity measurement was recorded using a Secchi disk between 10 am - 4 pm.

LABORATORY SAMPLES

Water samples were collected once per quarter, beginning in February at site SWMP-03 at 1, 5, and 10 m depths using a 1 L Van Dorn sampler. Samples were collected for chlorophyll-a (unfiltered), orthophosphate (raw water) and total phosphorous (preserved H₂SO₄) analyses.

Additional samples for Hardness, TSS, and Total Metals, including Mercury (unfiltered) analyses, were collected from similar depths five times in thirty days in February and August from SWMP-03. Surface samples for *E. coli* were collected five times in thirty days in August from SWMP-03, SWMP-04 and Modified SWMP-06. One duplicate sample was collected for each parameter (except *E. coli*) on each sampling date; the depth of the duplicate sample was determined randomly in advance using a number generator app.

Water sampling procedures followed guidelines provided by ALS Laboratoriess, those outlined in the *Ambient Freshwater and Effluent Sampling Manual* (BC Ministry of Water, Land and Air Protection 2003) and those provided in the ELPMP (PGL 2016). Sample bottles were pre-labelled and handled carefully to prevent contamination of the interior cap or bottle. The Van Dorn was rinsed before each sampling event, and allowed to remain at the desired sampling depth for 10 seconds before retrieving samples to ensure mixing within the sampling tube. Water samples were carefully transferred to the bottles provided from ALS, packed in a cooler with ice and completed COC form. Samples were immediately shipped to the ALS lab in Burnaby for analysis by ground courier.

Lake sediment samples were collected in mid-August for analysis of polycyclic aromatic hydrocarbons (PAHs) from SWMP-03, near shore at SWMP-04 and near shore at Modified SWMP-06. The Ekman sampler was allowed to settle gently on the sediment before triggering, and a retrieved sample was transferred to the amber glass sample jars as intact as possible. At sites SWMP-04 and Modified SWMP-06, sediment samples had to be retrieved from closer to shore after five attempts were made at each site using the Ekman sampler; organic litter and debris prevented successful deployment of the Ekman sampler at both locations.

ADDITIONAL MONITORING

In 2022, the Friends of Enos Lake also undertook additional monitoring as part of a Level 1 lake monitoring program. This included twelve approximately weekly water clarity (Secchi depth) measurements and depth profiles (Temperature-DO) at site SWMP-03 from June 22 to September 29. This monitoring was managed by the BC Lake Stewardship Society; more information about sampling methods can be found at: https://www.bclss.org/programs#bclsmp-monitoring-levels

INVASIVE SPECIES & WILDLIFE

Incidental monitoring for invasive species occurred concurrently with water sampling, through visual observation and assessment of emergent/shallow submerged vegetation seen while travelling to the sample site and any plant matter attached to the boat anchor. Incidental wildlife observations were also noted.

HISTORICAL AIR TEMPERATURE AND PRECIPITATION

Data were retrieved from Environment Canada's historical weather database for the Qualicum Beach Airport weather station (Meteorological Service of Canada - Climate ID 1026562), for the period of January 1, 2016 to December 20, 2022. The weather station is located approximately 20 km from the Nanoose peninsula. Data were summarized by daily maximum, mean, and minimum values.

2.3 Analysis

ALS Laboratories (Burnaby, BC) performed all sample analyses including Quality Assurance/Quality Control (QA/QC) for assessment methods. Results were received by BCCF two to three weeks after sample submission (Appendix 1).

All results were sent to professional limnologist John Deniseger for further review and comparison to water quality guidelines and historical data for Enos Lake. Deniseger's analysis is summarized in "*Enos Lake Protection and Monitoring Program: Review of Water Quality Data for 5 Year Period from 2017 to 2022*" (Appendix 2); highlights of Deniseger's findings and some additional figures are presented here. Data were compiled using MS Excel and summarized using descriptive analyses.

3.0 Results

Water quality targets as listed in the ELPMP are summarized in Table 2. Each parameter is discussed in detail in Deniseger (2022) (Appendix 2). Summaries of the BC Water Quality Guidelines for relevant lab parameters are also included in Deniseger (2022).

	Parameter (units)	Water Quality Target
	Secchi depth (m)	None - supporting context only
Imeters	Dissolved Oxygen (mg/L)	≥5 mg/L epilimnion ≥2 mg/L hypolimnion
oara	Conductivity (μS/cm)	None - supporting context only
itu p	Temperature (°C)	None - supporting context only
ln si	рН	None - supporting context only
	Redox (mV)	None - supporting context only
	Total phosphorous (μg/L or mg/L)	≤12 μg/L
	Chlorophyll-a (µg/L)	Avoid any increase ¹
ıb result	Metals (various)	BC Water Quality Guidelines – Total Metals ² , Freshwater Aquatic Life (both chronic & acute, where applicable)
Га	PAHs (μg/mg or mg/kg)	BC Water Quality Guidelines – Freshwater Sediments
	E. coli (#/mL)	BC Water Quality Guidelines – Recreation (Secondary contact) ³

Table 2: Summary	v of Water Ouality	Monitoring Ta	rgets for data collect	ed in 2022 (PGL 2016).
Tuble 2. Summary	y of watch Quality	into incoring ru	igets for data concet	

¹ – Chlorophyll-*a* baseline data for Enos Lake (2009-2013) ranges from 0.17 to 19.8 μ g/L; values typically in the range of 4-5 μ g/L (PGL 2016).

² – Certain metals (e.g. Copper, Aluminum) have guidelines for Dissolved Metals, which are not addressed through sampling for Total Metals.

³ – Secondary contact guidelines not available so Primary Contact guidelines used.

3.1 Air temperature and precipitation

Mean daily air temperature and precipitation data are summarized in Figure 2. A comparison of the mean monthly air temperature and precipitation for the summer period (June – September) is provided in Table 3.

Air temperatures in June and July of 2022 did not deviate far from temperatures observed in past years. However, mean monthly air temperatures in August and September of 2022 were the highest on record since 2016 (Table 3).

While July of 2022 had the highest mean monthly precipitation on record since 2016, both August and September had extremely low mean monthly precipitation relative to past years (Table 3). This indicates it was a cool and damp spring that extended well into July, and a very dry late summer that extended well past the typical dry season.

Figure 2: Mean daily air temperature and precipitation for the Qualicum Beach Airport, 2016-2022 (Environment Canada 2022).

Table 3: Mean monthly air temperature and precipitation for the Qualicum Beach Airport, Jun-Sep2016-2022 (Environment Canada 2022).

r														
XX Warmest mea	in monthly air	r temperature	(since 2016)				ĺ							
Mean monthly precip < 0.5 mm														
JUNE														
	2016	2016 2017 2018 2019 2020 2021												
Air temp (°C)	15.8	15.3	15.2	16.1	14.9	17.8	15.1							
Precipitation (mm)	1.2	0.6	1.2	0.4	1.8	1.3	1.3							
JULY														
	2016	2017	2018	2019	2020	2021	2022							
Air temp (°C)	17.9	18.0	19.3	17.8	17.6	19.8	19.0							

Precipitation (mm)	0.5	0.0	0.2	0.9	0.5	0.0	1.1						
AUGUST													
	2016	2017	2018	2019	2020	2021	2022						
Air temp (°C)	18.7	19.2	18.8	18.4	17.1	18.9	20.1						
Precipitation (mm)	0.5	0.1	0.0	0.3	1.2	0.2	0.0						
SEPTEMBER													
	2016	2017	2018	2019	2020	2021	2022						
Air temp (°C)	13.6	15.5	14.0	14.6	15.9	14.4	16.0						
Precipitation (mm)	1.5	0.7	3.0	2.5	1.0	3.5	0.1						

3.2 In situ Field Parameters

A summary of highlights from field monitoring is provided below. Each parameter is discussed in detail in Deniseger (2022) (Appendix 2).

WATER CLARITY

Water clarity is evaluated using Secchi depth. In 2022, Secchi depth ranged between a minimum of 1.3 m on February 1 to a high of 3.6 m on July 12. This pattern is consistent with a phytoplankton bloom in February, which appears to also be a frequent occurrence for Enos Lake in previous years. The average annual Secchi depth since 2017 is approximately 2.7 m (Fig. 3).

Figure 3: Annual Secchi depth values, 2017-2022. X represents mean while horizontal bar represents median.

TEMPERATURE

In 2022, water temperature varied with the season. The lake was relatively isothermal (between 4-7°C) in both February and November; however, strong thermal stratification was exhibited in May and August. The thermocline showed signs of degradation in early October. However, thermal stratification likely persisted later than usual in 2022 due to the warm and dry fall season. The maximum water temperature recorded by BCCF was 23.9°C, measured at the surface (0.5 m) on August 15, 2022 at 11:00 am (Fig. 4). The Friends of Enos Lake conducted additional weekly depth profiles during August and observed a maximum surface temperature of 25.1°C on August 3, 2022 at 2:00 pm.

While the epilimnion ranges from 12-20°C and 20-24°C in May and August, repectively, the hypolimnion always remains below 10°C (Fig. 5). Patterns of thermocline⁴ development are relatively consistent, with the greatest annual variation seen for spring surface temperatures (Fig. 6).

Figure 4: Mean annual water temperature values (n=4 samples per year), 2017-2022.

Figure 5: Stratified layer mean water temperatures for Enos Lake, 2017-2022. The light blue bar on the left is the epilimnion, while the dark blue bar on the right is the hypolimnion.

Figure 6: Measured thermocline depths for Enos Lake, 2017-2022.

⁴ – The thermocline is defined as the zone where water temperature changes \geq 1°C with every meter of lake depth

DISSOLVED OXYGEN

In 2022, the dissolved oxygen (DO) water quality target (\geq 5 mg/L for the epilimnion) was met throughout the year; however, the DO target for the hypolimnion (\geq 2 mg/L) was not met from summer through fall. Despite the cool, wet spring conditions, the DO was already severely depleted at depth as of mid-May 2022. Severely anoxic conditions developed below the thermocline by mid-August and eventually expanding upwards to a depth of 6 m by mid-September.

The epilimnion has not dropped below the DO target since sampling began in 2017; however, the hypolimnion is consistently below target in summer. This is mentioned in the ELPMP, which noted the DO concentrations are "often below 1.0 mg/L" and that this is a natural existing condition of the lake (PGL 2016) and is due to the decomposition of organic matter (Deniseger 2022).

Figure 7: Stratified layer mean dissolved oxygen concentrations for Enos Lake, 2017-2022. The light blue bar on the left is the epilimnion, while the dark blue bar on the right is the hypolimnion. The light blue dashed line the DO target for the epilimnion, while the red dashed line is the DO target for the hypolimnion.

3.3 Laboratory Samples

An overview of sample results is provided in Table 4 and all laboratory results are in Appendix 1. Each parameter is discussed in detail in Deniseger (2022) in Appendix 2. Additional figures are provided in Appendix 3.

PHOSPHOROUS

In 2022, the mean annual Total Phosphorous (Total P) was 14.4 μ g/L (*SD* = 6.75), which is above the water quality target of 12 μ g/L. The target threshold was exceeded by individual samples on eight occasions from May to November of 2022 (Table 4).

In 2021 and 2019, the mean annual Total P was below target at 10.68 μ g/L (*SD* = 4.27) and 7.3 μ g/L (*SD* = 5.0), respectively. In 2020, 2018, and 2017, the averages were at or above target at 12.0 μ g/L (*SD* = 2.5), 16.6 μ g/L (*SD* = 10.6), and 20.4 μ g/L (*SD* = 11.1), respectively (Fig. 8).

Orthophosphate was relatively undetectable in 2022, with values below the laboratory Reporting Detection Limit (RDL) of 1 μ g/L for almost all samples. An incorrect analysis method was requested in May 2022 (Total Dissolved Phosphorous (TDP) instead of Dissolved Orthophosphate), thus, results were removed from analysis. Note, all TDP results from May 2022 were also above the Total Phosphorous target of 12.0 μ g/L (Appendix 1).

Figure 8: Mean annual Total Phosphorous values, 2017-2022; red line is threshold target (12 µg/L).

CHLOROPHYLL-A

In 2021, chlorophyll-*a* concentrations were below the upper limit of 19.8 μ g/L as specified in the ELPMP (Table 2). The maximum chlorophyll-*a* concentration was 16.6 μ g/L, collected on November 21, 2022 at 1 m depth (Table 4).

The mean annual chlorophyll-*a* concentration across all depths and dates in 2022 was 10.7 μ g/L (*SD* = 3.4). This is similar to results from 2020, 2018, and 2017 (Fig. 9). Note the lab destroyed the intact sample due to a communication error in February 2019; thus, there are no results for this month. This likely skews the result for 2019 (Fig. 9).

Figure 9: Mean annual Chlorophyll-a results for Enos Lake , 2017-2022.

E. COLI

Escherichia coli are a type of bacteria found in the environment. The number of *E. coli* per 100 mL is used to evaluate water quality for recreational use. In 2022, *E. coli* was sampled five times in thirty days from August 2 – 28. In 2017, sampling occurred five times in thirty days from August 24 – September 13. In both years, samples were collected from the surface at three different sites (Fig. 1).

The ELPMP notes that Secondary Contact guidelines should be used. No such guidelines are currently listed on the BC Water Quality Guideline webpage (<u>https://bcgov-env.shinyapps.io/bc_wqg/</u>). The main recreational use of the lake is non-motorized paddling, although even this is limited due to the inaccessible shoreline and lack of boat launch. Dogs are frequent swimmers in the lake due to the proximity of walking trails. BCCF observed one human swimmer for the first time in the summer of 2022. This suggests that Primary Contact guidelines could apply. The Primary Contact guidelines for recreational use are:

- < 200 E. coli /100 mL; geometric mean concentration (minimum of 5 samples*) or,
- ≤ 400 E. coli /100 mL; single sample maximum concentration

Sample results in both sample years are well below the primary contact guidelines for E. coli (Fig. 10).

Figure 10: E. coli results for Enos Lake, 2017 & 2022.

METALS

The BC Water Quality Guidelines are largely based on Total Metals concentrations, although some Dissolved Metals concentrations apply (see Appendix 2, Table 5.1). Dissolved Metals were sampled in 2017, while Total Metals were sampled in 2022 (Table 5). In 2022, results were generally well within the BC guidelines for aquatic life at all depths, although some samples required further interpretation (Deniseger 2022):

Aluminum

In 2017, Dissolved Aluminum (Al) was well below the guidelines in all samples. In February 2022, Total Al exceeded the guideline for Dissolved Al (chronic maximum). However, data from 2017 showed that Dissolved Al was 39–49% of Total Al; under a similar assumption, Dissolved Al would likely have met the guideline. For more details, please see Appendix 2.

Copper

The guideline for Dissolved Copper (Cu) requires dissolved organic carbon (DOC) data for interpretation. An approximate chronic guideline of 0.4 μ g/L and an approximate acute guideline of 2.3 μ g/L Dissolved Cu was established by Deniseger (2022). Using the estimated guidelines, the Dissolved Cu concentrations exceeded the chronic guideline in 2017 while Total Cu exceeded both the chronic and acute guidelines for Dissolved Cu in 2022. Similar to the procedure for Aluminum, a comparison of data from 2017 suggests Dissolved Cu makes up a lower proportion of Total Cu. Interpretation remains limited without DOC and Dissolved Cu data (Deniseger 2022).

Manganese & Iron

Manganese (Mn) and Iron (Fe) both follow a similar pattern driven by internal loading due to anoxic conditions at depth (Deniseger 2022). Mn met both the chronic and acute guidelines in 2017 and 2022, but Fe exceeded guidelines at depth in August 2017 and in August 2022.

Zinc

Depending on interpretation, Dissolved Zinc (Zn) either met or just slightly exceeded the Total Zn chronic guideline in March 2017. More details are available in Deniseger (2022). Total Zn met both the chronic and acute guidelines in 2022.

PAHs

Interpretation of PAH data is limited as there is no organic carbon data available to calculate the appropriate sediment criteria for Enos Lake. Using an estimated 1.0% organic carbon content, both Benzo(a)pyrene and phenanthrene appear to exceed sediment guidelines in August 2022 (Table 6). Both also appeared to increase relative to 2017. However, if organic carbon content exceeds approximately 5%, it is unlikely these values exceed guidelines. Historical sampling showed a relatively consistent mean Total Organic Carbon (TOC) concentration of 5.9 mg/L in water; however, no data about TOC in sediment is available.

3.4 Invasive Species & Wildlife Observations

No invasive species were noted during field sampling in 2022. River otters (at least one adult and two juveniles) were noted for the first time by BCCF in Enos Lake in 2022. Scat around the lake has been observed for years, but this is the first time the otters have been observed swimming near the watercraft. The otters appear to have taken up residence in the lake, as they were observed on every sampling date from February through November 2022. Several scat piles containing what appear to be crustacean (crayfish) shells are visible around the lake.

Mergansers and buffleheads have been observed, and at least eighteen bald eagles were observed bathing and resting near the lake in mid-February 2022. Several groups of eagles formed at the north and south ends of the lake. Despite the visible presence of nests and the occasional sighting, such a high number of eagles had not been observed before by BCCF (Figure 12). Finally, for the first time ever, BCCF staff observed a stickleback swimming near the watercraft (very close to the water's surface) on August 23, 2022.

Figure 11: River otter swims in Enos Lake, February 15, 2022. Photo by Danny Swainson.

Figure 12: Eagles gathering and bathing in Enos Lake, February 15, 2022. Photos by Danny Swainson.

	Date Feb 15					May 16, 2022				Aug 15, 2022				Nov 21, 2022				
		Site		SW	MP-03		SWMP-03					SW	'MP-03		SWMP-03			
	Units	RDL ⁵	1 m	5 m	10 m	Duplicate 1 m	1 m	5 m	10 m	Duplicate 10 m	1 m	5 m	10 m	Duplicate 5 m	1 m	5 m	10 m	Duplicate 10 m
Plant pigments																		
Chlorophyll-a	μg/L	0.50	8.86	7.10	8.15	8.26	8.18	15.2	11.6	11.6	5.78	10.0	10.4	10.4	16.6	14.0	12.9	12.4
Anions & Nutrient	<u>s</u>	•	•	•	•	•	•	•	•	•		•	•	•		•	•	•
Orthophosphate- Dissolved (as P)	mg/L	0.0010	0.0011	<0.001	0.0013	-	-	-	-	-	<0.001	0.0012	<0.001	0.0011	<0.001	<0.001	<0.001	<0.001
Total dissolved phosphorous ⁶	mg/L	0.0020	-	-	-	-	0.0117	0.0136	0.0167	0.0182	-	-	-	-	-	-	-	-
Total Phosphorus (P)	mg/L	0.0020	0.0097	0.0089	0.0092	-	0.0150 ⁷	0.0134 ⁷	0.0168 ⁷	0.0178 ⁷	0.0091	0.0180 ⁷	0.0333 ⁷	0.0188 ⁷	0.0141 ⁷	0.0117	0.0126 ⁷	0.0133 ⁷
Physical tests											-							
Hardness (as CaCO3), from total Ca/Mg	mg/L	0.60	44.0	44.0	45.9	-	-	-	-	-	48.6	45.4	46.8	46.0	-	-	-	-
Total Suspended Solids (TSS)	mg/L	3.0	-	<3.0	-	-	-	-	-	-	<3.0	3.2	4.0	<3.0	-	-	-	-
Turbidity	NTU	0.10	-	1.25	-	-	-	-	-	-	1.11	1.20	3.08	1.26	-	-	-	-
Microbiological te	sts																	
E. coli	#/100mL	1	-	-	-	-	-	-	-	-	2	-	-	-	-	-	-	-

Table 4: Summary of Laboratory Results (excluding metals and sediment) from Enos Lake 2022 Water Quality Monitoring.

 5 – RDL = Reportable Detection Limit

⁶ – Incorrect analysis requested; Total Dissolved Phosphorous by Colourimetry reported (not Dissolved Orthophosphate by Colourimetry)

 7 – Total phosphorous values exceeding the water quality target of $\leq 12 \mu g/L$

Table 5: Summary of Metals results from Enos Lake 2022 Water Quality Monitoring.

Enos Lake Metals/Nutrients/Anions <u>1st quarter - FEBRUARY 2022</u> (5 times in 30 days)	Enos Lake Metals/Nutrients/Anions 1st quarter - FEBRUARY 2022 (5 times in 30 days)						Sampling Date 8-Feb-2022 Report Date 18-Feb-2022 C.O.C. 20-986002 Job # VA22A2563 Lab ALS				
Biotic, Anions & Nutrients	Units	RDL	SWMP03-1M	SWMP03-1M duplicate	SWMP03-5M	SWMP03-10M	SWMP03-1M	SWMP03-5M	SWMP03-5M duplicate	SWMP03-10M	
Chlorophyll a	ug/L	0.5	-	-	-	-	-	-	-	-	
Orthophosphate (P)	mg/L	0.001	-	-	-	-	-	-	-	-	
Total Phosphorus (P)	mg/L	0.002	-	-	-	-	-	-	-	-	
Total Coliforms			-	-	-	-	-	-	-	-	
E. coli	CFU/100mL	1	-	-	-	-	-	-	-	-	
Physical & Inorganics	Units	RDL	SWMP03-1M	SWMP03-1M duplicate	SWMP03-5M	SWMP03-10M	SWMP03-1M	SWMP03-5M	SWMP03-5M duplicate	SWMP03-10M	
Total Hardness (CaCO3)	mg/L	0.5	42.2	42.8	42.0	42.0	41.1	41.5	41.8	41.7	
Dissolved Hardness	mg/L	0.5	-	-	-	-	-	-	-	-	
Turbidity			-	-	1.5	-	-	-	1.4	-	
TSS			-	-	<3.0	-	-	-	<3.0	-	
pH			6.5	6.5	6.6	6.6	6.6	6.7	6.7	6.7	
Total Metals by ICPMS	Units	RDL	SWMP03-1M	SWMP03-1M duplicate	SWMP03-5M	SWMP03-10M	SWMP03-1M	SWMP03-5M	SWMP03-5M duplicate	SWMP03-10M	
Total Aluminum (Al)	ug/L	3	67.2	55.7	83	83.1	58	61.7	58.1	64.2	
Total Antimony (Sb)	ug/L	0.1	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	
Total Arsenic (As)	ug/L	0.1	0.17	0.18	0.17	0.18	0.18	0.18	0.17	0.18	
Total Barium (Ba)	ug/L	0.1	14.9	15.1	15.1	15.5	14.5	14.5	14.4	14.4	
Total Beryllium (Be)	ug/L	0.1	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	
Total Bismuth (Bi)	ug/L	0.05	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	
Total Boron (B)	ug/L	10	19 - PDI	19	19	19	18	19	19	19	
Total Casium	ug/L	0.005									
Total Chromium (Cr)	ug/L	0.5	< RDL	< RDL	1.34	< RDL	< RDL	< RDL	< RDL	< RDL	
Total Cobalt (Co)	ug/L	0.1	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	
Total Copper (Cu)	ug/L	0.5	1.72	1.52	1.44	1.35	1.54	1.58	1.45	1.34	
Total Iron (Fe)	ug/L	10	162	154	167	163	132	141	139	144	
Total Lead (Pb)	ug/L	0.05	0.21	0.367	0.194	0.155	0.981	0.43	0.234	0.097	
Total Lithium (Li)	ug/L	1	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	
Total Manganese (Mn)	ug/L	0.1	27.2	27	27.6	27.4	24.8	25.7	25.6	26.3	
Total Mercury (Hg)	ug/L	0.005	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	
Total Molybdenum (Mo)	ug/L	0.05	0.174	0.218	0.172	0.167	0.176	0.174	0.19	0.172	
Total Nickel (NI)	ug/L	0.5	< RDL 0.42	< RDL 0.41	< RDL	< RDL	< RDL 0.26	< RDL 0.41	< RDL	< RDL	
Total Selenium (Se)	ug/L	0.2	0.42	0.41	0.055	0.44	0.30	< RDI	0.4	0.38	
Total Silicon (Si)	ug/L	100	3610	3560	3680	3670	3400	3440	3440	3490	
Total Silver (Ag)	ug/L	0.01	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	
Total Strontium (Sr)	ug/L	0.2	43.7	42.4	43.4	44.9	41.6	42.3	42.1	40.8	
Total Tellurium	ug/L	0.2	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	
Total Thallium (TI)	ug/L	0.01	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	
Total Thorium	ug/L	0.1	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	
Total Tin (Sn)	ug/L	0.1	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	
Total Titanium (Ti)	ug/L	0.3	2.24	1.65	3.5	3.54	2.04	2.3	2.17	2.37	
Total Lungsten	ug/L	0.1	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	
Total Vanadium (V)	ug/L	0.01	NDL 0.96	0.87	NDL 0.86	NDL 0.85		0.52	0.51		
Total Zinc (Zn)	ug/L	3	3	3.7	< RDL	< RDL	5.5	4.2	< RDL	< RDL	
Total Zirconium (Zr)	ug/L	0.2	- < RDL	< RDL	< RDL	0.21	< RDL	< RDL	< RDL	< RDL	
Total Calcium (Ca)	mg/L	0.05	14.4	14.7	14.3	14.3	14	14.1	14.2	14.2	
Total Magnesium (Mg)	mg/L	0.005	1.51	1.49	1.52	1.53	1.49	1.54	1.53	1.52	
Total Potassium (K)	mg/L	0.05	0.31	0.301	0.305	0.307	0.29	0.297	0.299	0.296	
Total Sodium (Na)	mg/L	0.05	7.09	6.99	6.99	7.09	6.74	6.87	6.8	6.82	
Total Sulphur (S)	mg/L	0.5	1.96	2.02	1.75	1.88	1.5	1.59	1.65	1.69	

RDL = Reportable Detection Limit

Sampling Date Report Date C.O.C. Job # Lab	15-Feb-2022 28-Feb-2022 20-986008 VA22A3162 ALS					Sampling Date Report Date C.O.C. Job # Lab	22-Feb-2022 9-Mar-2022 20-986007 VA22A3571 ALS			Sampling Date Report Date C.O.C. Job # Lab	28-Feb-2022 10-Mar-2022 20-986006 VA22A4191 ALS		
SWMP03-1M	SWMP03-1M duplicate	SWMP03-5M	SWMP03- 5M duplicate	SWMP03-10M	SWMP03- 10M duplicate	SWMP03-1M	SWMP03-1M duplicate	SWMP03-5M	SWMP03-10M	SWMP03-1M	SWMP03-5M	SWMP03-5M duplicate	SWMP03-10M
8.9	8.3	7.1	-	8.2	-	-	-	-	-	-	-		-
0.0011	-	<0.001	<0.001	0.0013	-	-	-	-	-	-	-		-
0.0097	-	0.0089	-	0.0092	0.0092	-	-	-	-	-	-		-
-	-	-	-	-	-	-	-	-	-	-	-		-
-	-	-	-	-	-	-	-	-	-	-	-		-
SWMP03-1M	SWMP03-1M duplicate	SWMP03-5M	SWMP03- 5M duplicate	SWMP03-10M	SWMP03- 10M duplicate	SWMP03-1M	SWMP03-1M duplicate	SWMP03-5M	SWMP03-10M	SWMP03-1M	SWMP03-5M	SWMP03-5M duplicate	SWMP03-10M
44.0	-	44.0	-	45.9	45.6	43.9	44.8	44.1	44	43.8	44.1	43.5	43.3
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	1.24	1.26	-	-	-	-	1.43	-	-	1.38	-	-
-	-	<3.0	<3.0	-	-	-	-	<3.0	-	-	<3.0	-	-
	-		-	l	-	5.8	5.8	6.0	6.3	6.1	6.7	6.7	6.8
SWMP03-1M	SWMP03-1M duplicate	SWMP03-5M	SWMP03- 5M duplicate	SWMP03-10M	SWMP03- 10M duplicate	SWMP03-1M	SWMP03-1M duplicate	SWMP03-5M	SWMP03-10M	SWMP03-1M	SWMP03-5M	SWMP03-5M duplicate	SWMP03-10M
51.6	-	54.5	-	59.6	57.5	57.1	55.1	81.2	53.2	51.8	50.6	51.3	49.0
< RDL	-	< RDL	-	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL
0.18	-	0.19	-	0.15	0.19	0.19	0.17	0.16	0.18	0.23	0.22	0.2	0.2
15.6	-	15.6	-	15.6	16	16.2	15.3	15.8	15.3	17.1	16.9	16.8	16
< RDL	-	< RDL	-	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL
< RDL 20	-	< RDL	-	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL 10	< RDL	< RDL	< RDL
	-	19	-							< BDI 18	79 19	19	
< RDI	-	< RDI		< RDI	< RDI	< RDL	< RDI	< RDI		< RDL	< RDI	< RDI	
< RDL	-	< RDL	-	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL
< RDL	-	< RDL	-	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL
1.77	-	2.48	-	1.36	1.42	2.36	1.87	2.3	2.97	1.6	1.49	1.39	1.28
138	-	140	-	154	150	145	144	147	152	156	152	156	152
0.736	-	0.49	-	0.123	0.133	1.46	0.816	0.953	0.237	0.437	0.245	0.898	0.093
< RDL	-	< RDL	-	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL
26.3	-	26.9	-	28.7	28.2	27.4	26	26	27.1	26.7	26.9	26.6	26.4
< RDL	-	< RDL	-	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL
0.229	-	0.199	-	0.18	0.19	0.191	0.195	0.175	0.19	0.1//	0.185	0.182	0.172
C RDL	-	0.39	E	0.38	0 42	< RDL 0.48	0.44	0.42	0.42	0.41	0.42		0.39
0.088	-	0.069	-	0.074	0.058	0.094	0.088	0.072	0.079	0.098	0.088	0.062	0.063
3460	-	3440	-	3560	3510	3710	3690	3710	3690	3720	3740	3700	3580
< RDL	-	< RDL	-	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL
45.8	-	45.6	-	46.2	45.5	46.2	45	46.1	44.5	46	46.8	47.6	45.5
< RDL	-	< RDL	-	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL
< RDL	-	< RDL	-	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL
< RDL	-	< RDL	-	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL
< RDL	-	< RDL	-	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL
1.81	-	1.73	-	1.9	1.85	1.93	1.78	3.38	1.//	1.73	1.55	1.37	1.7
	1		E							NDL 0.018			
0.63	-	0.59	-	0.62	0.6	0.5	< RDL	0.54	0.51	0.92	0.82	0.79	0.75
7.8	-	< RDL	-	< RDL	< RDL	5.6	5.4	8.6	< RDL	< RDL	4.4	< RDL	< RDL
< RDL	1-	< RDL	-	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL	< RDL
15.0	1-	15.0	-	15.7	15.6	14.8	15.3	15	15	14.7	14.8	14.6	14.6
1.6	-	1.58	ŀ	1.62	1.62	1.69	1.61	1.61	1.6	1.73	1.73	1.71	1.67
0.304	-	0.304	-	0.312	0.305	0.337	0.297	0.303	0.294	0.309	0.321	0.308	0.298
7.35	-	7.25	-	7.46	7.52	7.99	7.56	7.57	7.52	8.32	8.18	8.08	8.01
1.74	-	1.9	-	1.74	1.75	1.63	1.66	1.69	1.73	1.92	1.82	1.85	1.72

<u>Enos Lake</u> <u>Metals/Nutrients/Anions, E. coli, a</u> <u>3rd quarter - AUGUST 2022</u> (5 times in 30 days)	Enos Lake_ Metals/Nutrients/Anions, E. coli, and PAHs 3rd quarter - AUGUST 2022 (5 times in 30 days)								Sampling Date Report Date C.O.C. Job # Lab	9-Aug-2022 17-Aug-2022 20-992050 VA22B8451 ALS				
Biotic, Anions & Nutrients	Units	RDL	SWMP03-1M	SWMP03-5M	SWMP03-5M duplicate	SWMP03-10M	SWMP06- 1M	SWMP04- 1M	SWMP03-1M	SWMP03-5M	SWMP03-10M	SWMP03-10M duplicate	SWMP06- 1M	SWMP04- 1M
Chlorophyll a	ug/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-
Orthophosphate (P)	mg/L	0.001	-	-	-	-	-	-	-	-	-	-	-	-
Total Phosphorus (P)	mg/L	0.002	-	-	-	-	-	-	-	-	-	-	-	-
Total Coliforms	MPN/100mL		261	-	-	-	2420	260	-	-	-	-	-	-
E. coli	MPN/100mL	1	<1	-	-	-	1	<1	1	-	-	-	2	1
Physical & Inorganics	Units	RDL	SWMP03-1M	SWMP03-5M	SWMP03-5M duplicate	SWMP03-10M			SWMP03-1M	SWMP03-5M	SWMP03-10M	SWMP03-10M duplicate		
Total Hardness (CaCO3)	mg/L	0.5	45.8	43	44.6	46.5	-	-	48.3	45.7	47.7	46.8	-	-
Dissolved Hardness	mg/L	0.5	-	-	-	-	-	-	-	-	-	-	-	-
Turbidity			-	1.37	-	-	-	-	-	1.39	-	-	-	-
TSS			-	<3.0	-	-	-	-	-	3.5	-	-	-	-
рН			-	8.1	7.1	6.9	-	-	7.9	7.0	7.0	6.7	-	-
Total Metals by ICPMS	Units	RDL	SWMP03-1M	SWMP03-5M	SWMP03-5M duplicate	SWMP03-10M			SWMP03-1M	SWMP03-5M	SWMP03-10M	SWMP03-10M duplicate		
Total Aluminum (Al)	ug/L	3	26.5	17.4	18.4	30.2	-	-	31.8	25	44	44.7	-	-
Total Antimony (Sb)	ug/L	0.1	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
Total Arsenic (As)	ug/L	0.1	0.23	0.18	0.18	0.3	-	-	0.25	0.18	0.32	0.29	-	-
Total Barium (Ba)	ug/L	0.1	17.8	16.9	16.4	22.6	-	-	18.5	16.8	23.7	23	-	-
Total Beryllium (Be)	ug/L	0.1	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
Total Bismuth (Bi)	ug/L	0.05	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
Total Boron (B)	ug/L	10	22	20	21	20	-	-	24	21	20	20	-	-
Total Cadmium (Cd)	ug/L	0.005	<rdl< td=""><td>0.0069</td><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	0.0069	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
Total Cesium	ug/L	0.01	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
Total Chromium (Cr)	ug/L	0.5	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
Total Cobalt (Co)	ug/L	0.1	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>0.14</td><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td>0.21</td><td>0.21</td><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>0.14</td><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td>0.21</td><td>0.21</td><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>0.14</td><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td>0.21</td><td>0.21</td><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	0.14	-	-	<rdl< td=""><td><rdl< td=""><td>0.21</td><td>0.21</td><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>0.21</td><td>0.21</td><td>-</td><td>-</td></rdl<>	0.21	0.21	-	-
Total Copper (Cu)	ug/L	0.5	1.1	1.02	1.09	0.79	-	-	1.74	1.3	0.98	0.92	-	-
Total Iron (Fe)	ug/L	10	42	61	66	2060	-	-	62	79	2960	2970	-	-
Total Lead (Pb)	ug/L	0.05	0.206	0.242	0.254	0.124	-	-	0.892	1.37	0.235	0.238	-	-
Total Lithium (Li)	ug/L	1	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
Total Manganese (Mn)	ug/L	0.1	17.3	24.2	26.7	207	-	-	30.4	39.7	304	303	-	-
Total Melubdonum (Ma)	ug/L	0.005	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rul 0.109</rul </td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rul 0.109</rul </td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rul 0.109</rul </td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rul 0.109</rul </td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rul 0.109</rul 	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
Total Nickel (Ni)	ug/L	0.05	0.208	0.188	0.191 <pdi< td=""><td>U.153</td><td>-</td><td>-</td><td>0.198</td><td>0.195</td><td>0.134</td><td>0.120</td><td>-</td><td>-</td></pdi<>	U.153	-	-	0.198	0.195	0.134	0.120	-	-
Total Rubidium	ug/L	0.5	0.51	0.30	0.44	0.54			0.52	0.45	0.5	0.5	-	-
Total Selenium (Se)	ug/L	0.05	0.068	0.076	0.44	0.04	-	-	0.082	0.45	0.092	0.068	-	-
Total Silicon (Si)	ug/L	100	2760	3120	3120	3920	-	-	2760	3010	4160	4190	-	-
Total Silver (Ag)	ug/L	0.01	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
Total Strontium (Sr)	ug/L	0.2	48.8	44.8	45.2	49.1	-	-	49.3	48.4	50	48.2	-	-
Total Tellurium	ug/L	0.2	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
Total Thallium (TI)	ug/L	0.01	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
Total Thorium	ug/L	0.1	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
Total Tin (Sn)	ug/L	0.1	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
Total Titanium (Ti)	ug/L	0.3	0.33	0.5	0.55	0.94	-	-	0.59	0.92	1.1	1.24	-	-
Total Tungsten	ug/L	0.1	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
Total Uranium (U)	ug/L	0.01	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
Total Vanadium (V)	ug/L	0.5	0.58	<rdl< td=""><td><rdl< td=""><td>0.85</td><td>-</td><td>-</td><td>0.64</td><td><rdl< td=""><td>1.11</td><td>1.1</td><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>0.85</td><td>-</td><td>-</td><td>0.64</td><td><rdl< td=""><td>1.11</td><td>1.1</td><td>-</td><td>-</td></rdl<></td></rdl<>	0.85	-	-	0.64	<rdl< td=""><td>1.11</td><td>1.1</td><td>-</td><td>-</td></rdl<>	1.11	1.1	-	-
Total Zinc (Zn)	ug/L	3	5.3	3.5	4.8	<rdl< td=""><td>-</td><td>-</td><td>26.3</td><td>6.7</td><td>3.8</td><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	-	-	26.3	6.7	3.8	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
Total Zirconium (Zr)	ug/L	0.2	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
Total Calcium (Ca)	mg/L	0.05	15.5	14.6	15.2	15.9	-	-	16.5	15.6	16.4	16.1	-	-
Total Magnesium (Mg)	mg/L	0.005	1.72	1.6	1.62	1.66	-	-	1.73	1.65	1.64	1.6	-	-
Total Potassium (K)	mg/L	0.05	0.35	0.321	0.329	0.373	-	-	0.333	0.326	0.382	0.378	-	-
Total Sodium (Na)	mg/L	0.05	7.56	7.17	7.15	7.48	-	-	7.77	7.44	7.31	7.24	-	-
Total Sulphur (S)	mg/L	0.5	1.42	1.51	1.6	0.98	-	-	1.62	1.67	0.6	0.72	-	-

RDL = Reportable Detection Limit

Sampling Date Report Date C.O.C. Job # Lab	15-Aug-2022 25-Aug-2022 20-982084 VA22B8970 ALS					Sampling Date 23-Aug-2022 Report Date 31-Aug-2022 C.O.C. 20-982086 Job # VA22B9715 Lab ALS					Sampling Date 29-Aug-2022 Report Date 6-Sep-2022 C.O.C. 20-982085 Job # VA22C0292 Lab ALS						
SWMP03-1M	SWMP03-5M	SWMP03-5M duplicate	SWMP03-10M	SWMP06- 1M	SWMP04- 1M	SWMP03-1M	SWMP03-1M duplicate	SWMP03-5M	SWMP03-10M	SWMP06- 1M	SWMP04 1M	SWMP03-1M	SWMP03-5M	SWMP03-5M duplicate	SWMP03-10M	SWMP06- 1M	SWMP04- 1M
5.8	10.0	10.4	10.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-
<0.0010	0.0012	0.0011	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.0091	0.018	0.0188	0.0333	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	75	-	-	-	236	267
2	-	-	-	1	<1	1	-	-	-	7	9	1	-	-	-	6	8
SWMP03-1M	SWMP03-5M	SWMP03-5M duplicate	SWMP03-10M			SWMP03-1M	SWMP03-1M duplicate	SWMP03-5M	SWMP03-10M			SWMP03-1M	SWMP03-5M	SWMP03-5M duplicate	SWMP03-10M		
48.6	45.4	46	46.8	-	-	44.9	44.6	42.6	44.4	-	-	47.5	44.3	45.4	47.7	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.11	1.2	1.26	3.08	-	-	-	-	1.44	-	-	-	-	1.4	-	-	-	-
<3.0	3.2	<3.0	4.0	-	-	-	-	<3.0	-	-	-	-	<3.0	-	-	-	-
8.1	6.9	6.9	6.7	-	-	8.0	8.0	6.7	6.8	-	-	8.0	6.7	6.7	6.7	-	-
SWMP03-1M	SWMP03-5M	SWMP03-5M duplicate	SWMP03-10M			SWMP03-1M	SWMP03-1M duplicate	SWMP03-5M	SWMP03-10M			SWMP03-1M	SWMP03-5M	SWMP03-5M duplicate	SWMP03-10M		
26.9	16.5	17.8	33.8	-	-	29.0	28.9	13.8	40.3	-	-	29.3	13.3	15.6	40.4	-	-
<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
0.25	0.17	0.21	0.33	-	-	0.24	0.24	0.18	0.32	-	-	0.24	0.18	0.19	0.35	-	-
19	18.2	18.4	25	-	-	18.6	18.9	17.9	24.2	-	-	18.8	17.8	18.4	25.5	-	-
<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
25	22	22	21	-	-	22	23	20	19	-	-	25	21	21	19	-	-
<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td></td><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td></td><td>0.01</td><td>-</td><td>-</td><td><rdl< td=""><td></td><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td></td><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td></td><td>0.01</td><td>-</td><td>-</td><td><rdl< td=""><td></td><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td></td><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td></td><td>0.01</td><td>-</td><td>-</td><td><rdl< td=""><td></td><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>		-	-	<rdl< td=""><td><rdl< td=""><td></td><td>0.01</td><td>-</td><td>-</td><td><rdl< td=""><td></td><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td></td><td>0.01</td><td>-</td><td>-</td><td><rdl< td=""><td></td><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>		0.01	-	-	<rdl< td=""><td></td><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>		<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
			< KDL	-	-				<rdl 0.22</rdl 	-	-				<rdl 0.25</rdl 	-	
1.68	1 34	2.05	0.22	-	-	1 76	1.8	1 28	1 13	-	-	1 38	2.7	1 34	2.84	-	-
53	64	63	2810	-	-	71	71	90	3580	-	-	69	65	64	3320	-	-
0.942	0.39	0.789	0.122	-	-	0.391	1.18	0.485	0.237	-	-	1.74	0.167	0.81	0.135	-	-
<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
28	36.8	36.3	340	-	-	35	35.2	59.1	388	-	-	38.6	55.6	48.5	411	-	-
<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
0.217	0.191	0.213	0.129	-	-	0.219	0.229	0.196	0.12	-	-	0.209	0.191	0.206	0.121	-	-
<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
0.47	0.37	0.39	0.52	-	-	0.52	0.52	0.44	0.56	-	-	0.55	0.42	0.42	0.56	-	-
0.086	0.078	0.092	0.094	-	-	<rdl< td=""><td>0.075</td><td>0.078</td><td>0.061</td><td>-</td><td>-</td><td>0.078</td><td>0.059</td><td>0.067</td><td>0.1</td><td>-</td><td>-</td></rdl<>	0.075	0.078	0.061	-	-	0.078	0.059	0.067	0.1	-	-
2770	3120	3020	4120	-	-	2760	2660	2820	4250	-	-	2850	2970	3020	4300	-	-
<kul 50.2</kul 	<kdl 46.5</kdl 		<kul 46.9</kul 	<u> </u>	-		<kul 50.2</kul 	< KUL 46.3	< KUL	-	-	<kul 50.1</kul 	< KDL 47.3	< KUL	< KUL 40.3	-	l – –
	40.5	40.4	40.9	-	-	49.8 <pdi< td=""><td></td><td>40.3</td><td>49.8</td><td>-</td><td>-</td><td></td><td>47.3</td><td>48.9 <rdi< td=""><td>49.3</td><td>-</td><td>-</td></rdi<></td></pdi<>		40.3	49.8	-	-		47.3	48.9 <rdi< td=""><td>49.3</td><td>-</td><td>-</td></rdi<>	49.3	-	-
<rdi <rdi< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td></td></rdi<></rdi 				-	-					-	-					-	
<rdi< td=""><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td>-</td><td>-</td><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td>-</td><td>-</td><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td>-</td><td>-</td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<>	<rdi< td=""><td><rdi< td=""><td><rdi< td=""><td>-</td><td>-</td><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td>-</td><td>-</td><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td>-</td><td>-</td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<>	<rdi< td=""><td><rdi< td=""><td>-</td><td>-</td><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td>-</td><td>-</td><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td>-</td><td>-</td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<>	<rdi< td=""><td>-</td><td>-</td><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td>-</td><td>-</td><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td>-</td><td>-</td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<>	-	-	<rdi< td=""><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td>-</td><td>-</td><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td>-</td><td>-</td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<>	<rdi< td=""><td><rdi< td=""><td><rdi< td=""><td>-</td><td>-</td><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td>-</td><td>-</td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<>	<rdi< td=""><td><rdi< td=""><td>-</td><td>-</td><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td>-</td><td>-</td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<>	<rdi< td=""><td>-</td><td>-</td><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td>-</td><td>-</td></rdi<></td></rdi<></td></rdi<></td></rdi<></td></rdi<>	-	-	<rdi< td=""><td><rdi< td=""><td><rdi< td=""><td><rdi< td=""><td>-</td><td>-</td></rdi<></td></rdi<></td></rdi<></td></rdi<>	<rdi< td=""><td><rdi< td=""><td><rdi< td=""><td>-</td><td>-</td></rdi<></td></rdi<></td></rdi<>	<rdi< td=""><td><rdi< td=""><td>-</td><td>-</td></rdi<></td></rdi<>	<rdi< td=""><td>-</td><td>-</td></rdi<>	-	-
<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
0.37	0.44	0.46	0.94	-	-	0.45	0.5	<rdl< td=""><td>0.98</td><td>-</td><td>-</td><td>0.49</td><td>0.31</td><td><rdl< td=""><td>1.05</td><td>-</td><td>-</td></rdl<></td></rdl<>	0.98	-	-	0.49	0.31	<rdl< td=""><td>1.05</td><td>-</td><td>-</td></rdl<>	1.05	-	-
<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td></rdl<>	-	-
0.55	<rdl< td=""><td><rdl< td=""><td>1.05</td><td>-</td><td>-</td><td>0.77</td><td>0.65</td><td><rdl< td=""><td>1.32</td><td>-</td><td>-</td><td>0.55</td><td><rdl< td=""><td><rdl< td=""><td>1.22</td><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>1.05</td><td>-</td><td>-</td><td>0.77</td><td>0.65</td><td><rdl< td=""><td>1.32</td><td>-</td><td>-</td><td>0.55</td><td><rdl< td=""><td><rdl< td=""><td>1.22</td><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	1.05	-	-	0.77	0.65	<rdl< td=""><td>1.32</td><td>-</td><td>-</td><td>0.55</td><td><rdl< td=""><td><rdl< td=""><td>1.22</td><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	1.32	-	-	0.55	<rdl< td=""><td><rdl< td=""><td>1.22</td><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>1.22</td><td>-</td><td>-</td></rdl<>	1.22	-	-
6.9	4.3	6.9	<rdl< td=""><td>-</td><td>-</td><td>5.8</td><td>4.9</td><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td>8.8</td><td>4.7</td><td>7.7</td><td>4.9</td><td>-</td><td>-</td></rdl<></td></rdl<></td></rdl<>	-	-	5.8	4.9	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td>8.8</td><td>4.7</td><td>7.7</td><td>4.9</td><td>-</td><td>-</td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td>8.8</td><td>4.7</td><td>7.7</td><td>4.9</td><td>-</td><td>-</td></rdl<>	-	-	8.8	4.7	7.7	4.9	-	-
<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><u> -</u></td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td><u> -</u></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><u> -</u></td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td><u> -</u></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><u> -</u></td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td><u> -</u></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><u> -</u></td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td><u> -</u></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<u> -</u>	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td><u> -</u></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td><u> -</u></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td><u> -</u></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td>-</td><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td><u> -</u></td></rdl<></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	-	-	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td><u> -</u></td></rdl<></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td><rdl< td=""><td>-</td><td><u> -</u></td></rdl<></td></rdl<></td></rdl<>	<rdl< td=""><td><rdl< td=""><td>-</td><td><u> -</u></td></rdl<></td></rdl<>	<rdl< td=""><td>-</td><td><u> -</u></td></rdl<>	-	<u> -</u>
16.6	15.5	15.7	16.1	-	-	15.2	15.1	14.5	15.2	-	-	16.2	15.1	15.5	16.3	-	-
1.74	1.63	1.65	1.6	-	-	1.68	1.68	1.56	1.56	-	-	1.72	1.6	1.64	1.62	-	-
0.35	0.334	0.331	0.391	-	-	0.349	0.35	0.333	0.408	-	-	0.366	0.332	0.342	0.406	-	<u> </u>
8.26	1.72	7.76	7.53	-	-	7.64	7.65	7.18	7.15	-	-	8.04	7.51	7.64	7.52	-	<u> -</u>
1.64	1.87	1.64	0.9	-	-	1.34	1.15	1.47	<0.50	l-	l-	1.53	1.68	1.64	0.64	-	-

Table 6: Summary of Sediment PAH results from Enos Lake 2022 Water Quality Monitoring.

Enos Lake Sediment PAHs 3rd quarter - AUG 2022		Sampling Date Report Date C.O.C. Job # Lab	15-Aug-2022 25-Aug-2022 20-982084 VA22B8970 ALS								
Physical Testing (SOIL)	Units			SWMP06		SWMP04		SWMP03			
Moisture	%			35.9	9	58.7		94.9		1	
μ	1	1	1			1					
CCME PAH IN SEDIMENTS BY GC-	MS (SOIL)						[
Calculated Parameters	. ,		UNITS	SWMP 06 PAH	RDL	SWMP 04 PAH	RDL	SWMP 03 PAH	RDL		
Index of Additive Cancer Risk (IARC)	N/A	IACR AB (coarse)	N/A	<0.10	0.	1 <0.10	0.1	0.22	0.16		
		IACR (CCME)	N/A	<0.60	0.	6 <0.60	0.6	6.07	0.6		
		IACR AB (fine)	N/A	<0.10	0.	1 <0.10	0.1	0.42	0.16		
D	÷	•	·							<u>BC v</u>	vater Quality Guidelines
Polycyclic Aromatics									Sediment Threshold - Max. Approved (BCMOECCS)*	Sediment Threshold - Max. Working (CCME)	
Acenaphthene	mg/kg (or ug/g)	Acenaphthene		<0.050	0.05	<0.050	0.05	<0.164	0.164	0.15 (No Effect)	0.0202 (No Effect) or 0.201 (Probable Effect)
Acenaphthylene	mg/kg (or ug/g)	Acenaphthylene		<0.050	0.05	<0.050	0.05	<0.164	0.164	-	0.00587 (No Effect) or 0.128 (Probable Effect)
Acridine	mg/kg (or ug/g)	Acridine		<0.050	0.05	<0.050	0.05	<0.164	0.164	1 (No Effect)	-
Anthracene	mg/kg (or ug/g)	Anthracene		<0.050	0.05	<0.050	0.05	<0.164	0.164	0.6 (No Effect)	0.0469 (No Effect) or 0.245 (Probable Effect)
Benzo(a)anthracene	mg/kg (or ug/g)	Benzo(a)anthracene		<0.050	0.05	<0.050	0.05	0.168	0.164	0.2 (No Effect)	0.0317 (No Effect) or 0.385 (Probable Effect)
Benzo(a)pyrene	mg/kg (or ug/g)	Benzo(a)pyrene		<0.050	0.05	<0.050	0.05	0.268	0.164	0.06 (No Effect)	0.0319 (No Effect) or 0.782 (Probable Effect)
Benzo(b+j)fluoranthene	mg/kg (or ug/g)	Benzo(b+j)fluoranthene		<0.050	0.05	<0.050	0.05	0.575	0.164	N/A	N/A
Benzo(b+j+k)fluoranthene	mg/kg (or ug/g)	Benzo(b+j+k)fluoranthene	2	<0.075	0.075	<0.075	0.075	0.575	0.232	N/A	N/A
Benzo(g,h,i)perylene	mg/kg (or ug/g)	Benzo(g,h,i)perylene		<0.050	0.05	<0.050	0.05	0.568	0.164	-	0.17 (No Effect) or 3.2 (Probable Effect)
Benzo(k)fluoranthene	mg/kg (or ug/g)	Benzo(k)fluoranthene		<0.050	0.05	<0.050	0.05	<0.164	0.164	-	0.24 (No Effect) or 13.4 (Probable Effect)
Chrysene	mg/kg (or ug/g)	Chrysene		<0.050	0.05	<0.050	0.05	0.187	0.164	-	0.0571 (No Effect) or 0.862 (Probable Effect)
Dibenz(a,h)anthracene	mg/kg (or ug/g)	Dibenz(a,h)anthracene		<0.050	0.05	<0.050	0.05	<0.164	0.164	-	0.00622 (No Effect) or 0.135 (Probable Effect)
Fluoranthene	mg/kg (or ug/g)	Fluoranthene		<0.050	0.05	<0.050	0.05	0.48	0.164	2 (No Effect)	0.111 (No Effect) or 2.36 (Probable Effect)
Fluorene	mg/kg (or ug/g)	Fluorene		<0.050	0.05	<0.050	0.05	<0.164	0.164	0.2 (No Effect)	0.0212 (No Effect) or 0.144 (Probable Effect)
Indeno(1,2,3-cd)pyrene	mg/kg (or ug/g)	Indeno(1,2,3-cd)pyrene		<0.050	0.05	<0.050	0.05	0.537	0.164	-	0.2 (No Effect) or 3.21 (Probable Effect)
Methylnaphthalene, 1+2-	mg/kg (or ug/g)	methylnaphthalene, 1+2-		<0.075	0.075	<0.075	0.075	<0.232	0.232	N/A	N/A
Methylnaphthalene, 1-	mg/kg (or ug/g)	methylnaphthalene, 1-		<0.050	0.05	<0.050	0.05	<0.164	0.164	N/A	N/A
Methylnaphthalene, 2-	mg/kg (or ug/g)	methylnaphthalene, 2-		<0.050	0.05	<0.050	0.05	<0.164	0.164	-	0.0202 (No Effect) or 0.201 (Probable Effect)
Naphthalene	mg/kg (or ug/g)	naphthalene		<0.050	0.05	<0.050	0.05	<0.164	0.164	0.01 (No Effect)	0.0346 (No Effect) or 0.391 (Probable Effect)
Phenanthrene	mg/kg (or ug/g)	phenanthrene		<0.050	0.05	<0.050	0.05	0.196	0.164	0.04 (No Effect)	0.0419 (No Effect) or 0.515 (Probable Effect)
Pyrene	mg/kg (or ug/g)	pyrene		<0.050	0.05	<0.050	0.05	0.434	0.164	-	0.053 (No Effect) or 0.875 (Probable Effect)
Quinoline	mg/kg (or ug/g)	quinoline		<0.050	0.05	<0.050	0.05	<0.164	0.164		3.4 (No Effect)
B(a)P total potency equivalents	mg/kg (or ug/g)	B(a)P total potency equiva	alents	<0.065	0.065	<0.065	0.065	0.494	0.164	N/A	N/A
Total PAH	mg/kg (or ug/g)	PAHs, total (BC Sched 3.4)		<0.20	0.2	<0.20	0.2	1.73	0.59	-	4 (No Effect), 35 (Probable Effect), 100 (Severe Effect) ***
	mg/kg (or ug/g)	PAHs, total (EPA 16)		<0.20	0.2	<0.20	0.2	3.41	0.66		
		Surrogate Recovery (%)								1	
		acridine-d9	%	83.5		88.9		86.5		* Sediment containing 1% organic ca	arbon
		chrysene-d12	%	89		89.5		88.9		** Based on background approach i	method. EC & MOE QUEBEC (not CCME)
		naphthalene-d8	%	78.3		81.5		80.1		*** Based on Long and Morgan 199	0 and Persuad et al. 1993
		phenanthrene-d10	%	79.8	1	83.4		82.6	1		

phenanthrene-d10 DLHM Detection Limit Adjusted: Sample has high moisture content.

HTD

Hold time exceeded for re-analysis or dilution, but initial testing was conducted within hold time.

20

4.0 Discussion

The primary intent of the Enos Lake monitoring program is to understand better the lake's productivity trends (PGL 2016; Deniseger 2022) and to build a consistent, long-term database to assess the overall health of Enos Lake with respect to ongoing development, land use, and increasing population within the watershed (Deniseger 2020; Nordin 2017; PGL 2016). The general management objective for Enos Lake is to maintain pre-development water quality and to avoid eutrophication (PGL 2016).

Watershed disturbances such as logging, road building, development, and climate change impact all have potential to shift the lake's trophic status through increased stormwater runoff, nutrient loading, rising air and water temperatures, and seasonal variability in precipitation. Therefore, it is important to take surrounding land use and seasonal climate patterns into account when interpreting the water quality trends of Enos Lake.

4.1 Air temperature and precipitation

The spring of 2022 was influenced by cool and wet weather for the east coast of Vancouver Island (Deniseger 2022; Environment Canada 2022). This was followed by extended drought and heat during the summer of 2022. Little to no precipitation was recorded between mid-July and late October (Fig. 2), characterizing the fall of 2022 as being unusually warm and dry.

2022 was nearly the inverse of weather patterns recorded in 2021; when a "heat dome" event caused early spring heat and drought, followed by an "atmospheric river" event in fall that caused flooding and significant precipitation. These types of extreme weather patterns are predicted to occur more frequently as the impacts of climate change unfold. Long-term trends of warming air and water temperatures will cause summer lake stratification to begin earlier and extend later in the year (Deniseger 2021).

4.2 In situ Field Parameters

WATER CLARITY

Secchi depth is a relatively simple measure of clarity, which can provide insight into lake health and productivity (Deniseger 2021). The Secchi readings collected in 2022 followed a similar trend as in 2021 and 2020, indicating an early spring phytoplankton bloom occurred in late February. The advantage of additional Secchi depth observations collected by the Friends of Enos Lake throughout the year allows for a broader understanding of Enos Lake's ecological dynamics. Monthly Secchi readings should continue, as it is a relatively inexpensive and simple way to gain additional insight into blooms or sediment loading.

TEMPERATURE

Water temperature influences the lake's susceptibility to watershed activities and disturbance. Also, it affects several chemical and physical water quality parameters and a. It has a significant and pronounced effect on stratification and mixing (Deniseger 2021). Enos Lake usually begins to stratify as early as March and April thermally, and undergoes fall turnover between October and November (Nordin 2017 and Deniseger 2018). In 2022, isothermal mixing was noted in February while stratification was observed in

May, suggesting adherence to this typical pattern. Stratification continued through late summer, contributing to the strongly anoxic conditions observed below 5 m depth in August (Deniseger 2022). The additional results collected by Friends of Enos Lake suggest stratification persisted well into September. By November, the lake was fully mixed.

DISSOLVED OXYGEN

The epilimnion has not dropped below the DO target since sampling began in 2017; however, the hypolimnion is consistently below target in summer. This is mentioned in the ELPMP as a natural existing condition of the lake (PGL 2016). The anoxic conditions in the hypolimnion are due to a combination of isolation from the atmosphere and decomposition of organic matter (Deniseger 2022). It is highly likely that the summer droughts and heat which have occurred over the last two years have exacerbated the lack of oxygen at depth (Deniseger 2022). Enos Lake is susceptible to a late summer fish kill if wind-induced mixing draws deeper anoxic water to the surface (Deniseger 2022). This presents a risk for the Enos Lake stickleback species.

4.3 Laboratory Samples

PHOSPHOROUS

In lakes, phosphorus is an important nutrient and key indicator of productivity. Excessive phosphorus can result in blooms and low DO levels, which impacts water quality and fish health (Deniseger 2021).

Total Phosphorus in August exceeded guidelines. Concentrations were 18.4 μ g/L at 5 meters, increasing to 33.3 μ g/L at depth, reflecting internal loading of phosphorus caused by strongly anoxic conditions (Deniseger 2022). By November, concentrations had decreased to 11.7 – 14.1 μ g/L, which is still somewhat elevated for the time of year and reflects the lack of overall flushing due to low precipitation through the fall (Deniseger 2022). Total phosphorus levels appear to have increased in 2022 relative to the past three years.

Once lakes become eutrophic or hypereutrophic, it is challenging to reverse this process. Prevention is a far more effective tool in protecting lake water quality (Deniseger 2022). Preventative measures include limiting nutrient loading caused by land disturbance and runoff, which can achieved through preservation of native vegetation and wide riparian buffers, avoidance of pavement or large lawnscapes in favour of permeable pavements or forested landscapes, sediment mitigation measures during construction, and a stormwater management plan to capture and treat runoff (WDNR 2006).

CHLOROPHYLL-A

The concentration of chlorophyll-*a*, a major photosynthetic pigment of algae, is an indicator of the amount of algae in water and is another parameter used to assess biological productivity of Enos Lake. A target for Enos Lake outlined in the ELPMP was to avoid any increase in chlorophyll-*a* over time from the baseline values ranging from $0.17 - 19.8 \mu g/L$ (Table 2). Based on the data gathered over the last six years, this target has thus far been met.

General trophic status classification using Total P and chlorophyll-*a* is summarized in Table 7 below, per comments in Deniseger (2021). All results are discussed in further detail in Deniseger (2022) (Appendix 2).

Table 7: Summary of trophic status classification based on chlorophyll-*a* and total phosphorous.

sno	<10 µg/L 1	Oligotrophic
Total	10 - 30 μg/L ¹	Mesotrophic
phc	>30 µg/L ¹	Eutrophic
II-a	<2 µg/L	Oligotrophic
orophy	2 - 7 µg/L	Mesotrophic
Chle	>7 µg/L	Eutrophic

¹ In lakes with longer residence times (>1 year), the Total P assessment is based on concentrations at spring overturn, prior to the establishment of a thermocline. In lakes with shorter residence times (<1 year), it is based on an annual mean.

Using the assessment methods in Table 7 for mean annual Total P, Enos Lake would be considered mesotrophic (or moderately productive) from 2017-2018 and 2020-2022, but oligotrophic (low productivity) in 2019. Using the assessment method for mean annual chlorophyll-*a*, Enos Lake would be considered mesotrophic in 2019 and 2021, but eutrophic (or highly productive) in 2017-2018, 2020, and 2022.

This year-to-year variability highlights the importance of building a longer-term dataset which can help illustrate trends over time. As lakes become more eutrophic (more biologically productive), algal blooms (including blue green algal blooms) can become more prevalent which leads to lower DO concentrations, impaired water quality, and impacts on recreational use and drinking water (Deniseger 2022).

Climate change will present further challenges as summer water temperatures increase, prompting further growth of algae and phytoplankton. The past two years are likely examples of the transition to more extreme summer conditions predicted in the future (Deniseger 2022).

E. COLI

Bacteriological sampling found that *E. coli* was well within the BC guidelines for primary recreational use (swimming).

METALS

Metals were generally well within the BC guidelines for aquatic life, although additional data is required for accurate interpretation of Aluminum, Copper, and Zinc.

Iron exceeded BC water quality guidelines at depth in August 2017 and August 2022. This was due to the mid-summer anoxic conditions in the deeper waters of Enos Lake which caused internal loading of phosphorous and subsequent release of iron and manganese (Deniseger 2022). In the fall, when the thermocline breaks down and the oxygen is replenished at depth, much of the phosphorus and iron would return to Enos Lake's sediment (Deniseger 2022).

Further information is required to interpret results. As dissolved organic carbon in water was not included as a required parameter in the ELPMP, consideration of the recommendations in this report should be made for future metals sampling.

PAHs

Polycyclic aromatic hydrocarbons (PAHs) indicate the presence of hydrocarbons and combustion products in sediment (Deniseger 2022). While some PAHs have been detected in Enos Lake, there is no information on the source or whether it is historic or recent (Deniseger 2022). In the ELPMP, the purpose for monitoring PAHs is to monitor potential contributions from surface runoff of hydrocarbons from road development and general industrial activity (PGL 2016).

Further information is required for the interpretation of results; as percent organic carbon content of sediment was not included as a required parameter in the ELPMP, consideration of the recommendations in this report should be made for future PAH sampling. Additional samples are required for long-term trend analysis.

4.4 Invasive Species & Wildlife Observations

A BCCF biologist trained in invasive aquatic plant ID attended all sampling dates except August 2, 2022. The BCCF team made incidental observations of aquatic and terrestrial plants, per recommendations in the ELPMP (PGL 2016). No aquatic invasive species were noted again in 2022.

Invasive species, such as Eurasian watermilfoil, are known be present nearby. Within the Enos Lake watershed, Dolphin Lake was treated with herbicides in 2017 for Eurasian milfoil (ClearLake Solutions 2017).

The wildlife observations in 2022 reaffirm the importance of Enos Lake as a habitat for multiple species, including birds of prey, waterfowl, mammals, and fish.

5.0 Recommendations

- 1. Ongoing monitoring and water quality protection efforts will help prevent Enos Lake from undergoing significant detrimental change in productivity. Future monitoring should, at minimum, follow the suggested schedule and guidelines as laid out in the ELPMP (PGL 2016).
- 2. Of specific concern in 2021 and 2022, the trend of intensifying hypoxia at depth and extending into the thermocline requires close attention to late summer mixing that could result in fish dieoffs in the coming years.
- 3. 2022 again showed the value of additional Secchi measurements. This should continue year-round, as volunteer capacity allows.
- 4. Additional parameters should be collected during future monitoring of metals in Enos Lake, including Dissolved Organic Carbon (once per 5-week sampling event, at each sampling depth) and Dissolved Copper. Additional analysis including % organic carbon should be performed for future sediment sampling.
- 5. A water budget for Enos Lake is recommended in order to support long-term watershed management planning.
- 6. Additional suggestions for data accuracy include continuing to implement a QA/QC program to increase confidence in field data collection methods and lab analysis results (e.g., duplicate and field blank samples, duplicate YSI readings on ascent & descent of probes).

References

- BC Ministry of Water, Land and Air Protection. 2003. Ambient Freshwater and Effluent Sampling Manual. Available from: https://www.for.gov.bc.ca/hts/risc/pubs/aquatic/ambient/ part_e_water_and_wastewater_sampling_ambient_freshwater_and_effluent_sampling_simulate _template.pdf>.
- Baird, R. and Bridgewater, L. 2017. *Standard Methods for the Examination of Water and Wastewater*. Washington, D.C.: American Public Health Association.
- BC Conservation Foundation (BCCF). 2019. Enos Lake Water Quality Monitoring Program 2019 Annual Report. Prepared for FW Developments Ltd. 54p.
- BC Conservation Foundation (BCCF). 2018. *Enos Lake 2018 Annual Water Quality Technical Report*. Prepared for FW Developments Ltd. 11p.
- BC Conservation Foundation (BCCF). 2017. *Enos Lake 2017 Annual Water Quality Technical Report*. Prepared for FW Developments Ltd. 16p.
- ClearLake Solutions. 2017. "Case History | Invasive Aquatic Plant removed from Dolphin Lake British Columbia". Accessed 2022-12-22. Available from: <u>https://www.clearlakesolutions.com/dophin-lake-british-columbia-cleanup/</u>.
- Deniseger, J. 2022. Enos Lake Protection and Monitoring Program: Review of Water Quality Data for 5 Year Period from 2017 to 2022. 30p.
- Deniseger, J. 2021. *Enos Lake Protection and Monitoring Program: Review of 2021 Water Quality Data*. 16p.
- Deniseger, J. 2020. *Enos Lake Protection and Monitoring Program: Review of 2020 Water Quality Data*. 14p.
- Deniseger, J. 2019. *Enos Lake Protection and Monitoring Program: Review of 2019 Water Quality Data*. 13p.
- Deniseger, J. 2018. *Enos Lake Protection and Monitoring Program: Review of 2018 Water Quality Data*. 10p.
- Environment Canada. 2011. Enos Lake Limnetic Threespine Stickleback. Species Profile. Available from: https://wildlife-species.canada.ca/species-risk-registry/species/species/betails_e.cfm?sid=749.
- Environmenta Canada. 2020. Daily Data Report for Qualicum Beach Airport, British Columbia. Available from: <https://climate.weather.gc.ca/climate_data/daily_data_e.html?hlyRange=2006-12-11%7C2020-12-17&dlyRange=2006-11-01%7C2020-12-17&mlyRange=2006-11-01%7C2006-11-01&StationID=45627&Prov=BC&urlExtension=_e.html&searchType=stnName&optLimit=yearRang e&StartYear=1840&EndYear=2020&selRowPerPage=25&Line=5&searchMethod=contains&Month =12&Day=17&txtStationName=qualicum&timeframe=2&Year=2020>.
- MacDonald Environmental Services Ltd (MESL). 2014. 2013 Water Quality Monitoring Report for Enos Lake, Nanoose Bay. Prepared for: Pottinger Gaherty Environmental Consultants Ltd.

- Michigan State University (MSU). 2008. *Cooperative Lakes Monitoring Program*. Annual Summary Report. 22p + appendices. Available from: https://www.canr.msu.edu/michiganlakes/uploads/files/2008CLMPFinalReport.pdf>.
- Nordin, R. 2017. Enos Lake Protection and Monitoring Program: Review of 2017 Water Quality Data. 23 p.
- Pettersson, K. 1998. Mechanisms for internal loading of phosphorus in lakes. *Hydrobiologia*, *373*, pp.21-25.
- PGL Environmental Consultants (PGL). 2016. *Enos Lake Protection and Monitoring Program*. Prepared for FW Enterprises Ltd. c/o Seacliff Properties. PGL file 4675-01.01. 30 p + figures and appendix.
- Taylor, E. B., Boughman, J. W., Groenenboom, M., Sniatynski, M., Schluter, D., & Gow, J. L. 2006. Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair. *Molecular Ecology*, 15(2), 343-355.
- Taylor, E. B., & Piercey, R. S. 2018. Going, going, gone: evidence for loss of an endemic species pair of threespine sticklebacks (Gasterosteus aculeatus) with implications for protection under speciesat-risk legislation. *Conservation genetics*, *19*(2), 297-308.
- Washington Department of Natural Resources (WDNR). 2006. Fact Sheet 2006–3033 Evaluating the Effects of Nearshore Development on Wisconsin Lakes. Available from: https://pubs.usgs.gov/fs/2006/3033/

Appendix 1 – Laboratory results

CERTIFICATE OF ANALYSIS

Work Order	: VA22A2093	Page	: 1 of 4
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby BC Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	+1 604 253 4188
Project	: Enos1302084	Date Samples Received	: 02-Feb-2022 08:45
PO	:	Date Analysis Commenced	: 03-Feb-2022
C-O-C number	: 20-986009	Issue Date	: 11-Feb-2022 11:01
Sampler	: TR/Chris		
Site	:		
Quote number	: VA2022BCCF1000001		
No. of samples received	: 4		
No. of samples analysed	: 4		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Dee Lee	Analyst	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
mg/L	milligrams per litre
NTU	nephelometric turbidity units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Water			Cl	ient sample ID	SWMP03-1m	SWMP03-1m	SWMP03-5m	SWMP03-10m	
(Matrix: Water)	(Matrix: Water)								
			Client samp	ling date / time	01-Feb-2022 10:40	01-Feb-2022 10:43	01-Feb-2022 10:48	01-Feb-2022 10:54	
Analyte	CAS Number	Method	LOR	Unit	VA22A2093-001	VA22A2093-002	VA22A2093-003	VA22A2093-004	
					Result	Result	Result	Result	
Physical Tests									
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	42.2	42.8	42.0	42.0	
solids, total suspended [TSS]		E160	3.0	mg/L			<3.0		
turbidity		E121	0.10	NTU			1.50		
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0672	0.0557	0.0830	0.0831	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00017	0.00018	0.00017	0.00018	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0149	0.0151	0.0151	0.0155	
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.019	0.019	0.019	0.019	
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
calcium, total	7440-70-2	E420	0.050	mg/L	14.4	14.7	14.3	14.3	
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0.00134	<0.00050	
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
copper, total	7440-50-8	E420	0.00050	mg/L	0.00172	0.00152	0.00144	0.00135	
iron, total	7439-89-6	E420	0.010	mg/L	0.162	0.154	0.167	0.163	
lead, total	7439-92-1	E420	0.000050	mg/L	0.000210	0.000367	0.000194	0.000155	
lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	
magnesium, total	7439-95-4	E420	0.0050	mg/L	1.51	1.49	1.52	1.53	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0272	0.0270	0.0276	0.0274	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000174	0.000218	0.000172	0.000167	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	
potassium, total	7440-09-7	E420	0.050	mg/L	0.310	0.301	0.305	0.307	
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00042	0.00041	0.00039	0.00044	
selenium, total	7782-49-2	E420	0.000050	mg/L	0.000111	0.000120	0.000066	0.000079	
silicon, total	7440-21-3	E420	0.10	mg/L	3.61	3.56	3.68	3.67	
			1	U V		I	I	I	I

Analytical Results

Sub-Matrix: Water		CI	ient sample ID	SWMP03-1m	SWMP03-1m	SWMP03-5m	SWMP03-10m	
(Matrix: Water)					rep			
		Client samp	ling date / time	01-Feb-2022 10:40	01-Feb-2022 10:43	01-Feb-2022 10:48	01-Feb-2022 10:54	
Analyte CAS Numb	er Method	LOR	Unit	VA22A2093-001	VA22A2093-002	VA22A2093-003	VA22A2093-004	
				Result	Result	Result	Result	
Total Metals								
silver, total 7440-22-	4 E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, total 7440-23-	5 E420	0.050	mg/L	7.09	6.99	6.99	7.09	
strontium, total 7440-24-	6 E420	0.00020	mg/L	0.0437	0.0424	0.0434	0.0449	
sulfur, total 7704-34-	9 E420	0.50	mg/L	1.96	2.02	1.75	1.88	
tellurium, total 13494-80-	9 E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	
thallium, total 7440-28-	0 E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
thorium, total 7440-29-	1 E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
tin, total 7440-31-	5 E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, total 7440-32-	6 E420	0.00030	mg/L	0.00224	0.00165	0.00350	0.00354	
tungsten, total 7440-33-	7 E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
uranium, total 7440-61-	1 E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
vanadium, total 7440-62-	2 E420	0.00050	mg/L	0.00096	0.00087	0.00086	0.00085	
zinc, total 7440-66	6 E420	0.0030	mg/L	0.0030	0.0037	<0.0030	<0.0030	
zirconium, total 7440-67-	7 E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	0.00021	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: VA22A2093	Page	: 1 of 6
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby, British Columbia Canada V5A 1W9
Telephone	250-390-2525	Telephone	: +1 604 253 4188
Project	: Enos1302084	Date Samples Received	: 02-Feb-2022 08:45
PO	:	Issue Date	: 11-Feb-2022 11:01
C-O-C number	: 20-986009		
Sampler	: TR/Chris		
Site			
Quote number	: VA2022BCCF1000001		
No. of samples received	: 4		
No. of samples analysed	: 4		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E	/aluation: × =	Holding time exce	edance ; 🔹	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Extraction / Preparation			Analysis				
Container / Client Sample ID(s)			Preparation	Holding Times Eval		Analysis Date	Holding	Times	Eval	
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry										
HDPE										
SWMP03-5m	E160	01-Feb-2022					03-Feb-2022	7 days	3 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
SWMP03-5m	E121	01-Feb-2022					03-Feb-2022	3 days	2 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
SWMP03-10m	E508	01-Feb-2022					05-Feb-2022	28 days	4 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
SWMP03-1m	E508	01-Feb-2022					05-Feb-2022	28 days	4 days	~
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										,
SWMP03-1m rep	E508	01-⊦eb-2022					05-Feb-2022	28 days	4 days	•
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)	FF00	04 5 4 0000								,
SWMP03-5m	E508	01-Feb-2022					05-Feb-2022	28 days	4 days	•
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)	E420	01 Ech 2022					00 Eab 2022	100	9 days	1
SWMPU3-IUM	E420	01-FeD-2022					09-Feb-2022	180	o days	v
								days		

Matrix: Water Evaluation: **x** = Holding time exceedance ; **√** = Within Holding Time Analyte Group Sampling Date Extraction / Preparation Analysis Method Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Total Metals : Total Metals in Water by CRC ICPMS HDPE - total (lab preserved) SWMP03-1m E420 01-Feb-2022 09-Feb-2022 8 days ✓ 180 -----------days Total Metals : Total Metals in Water by CRC ICPMS HDPE - total (lab preserved) ✓ E420 01-Feb-2022 SWMP03-1m rep ----09-Feb-2022 180 8 days -------days Total Metals : Total Metals in Water by CRC ICPMS HDPE - total (lab preserved) SWMP03-5m E420 01-Feb-2022 09-Feb-2022 8 days ✓ ----180 -------days

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water	Evaluation: \star = QC frequency outside specification; \star = QC frequency within specification.								
Quality Control Sample Type			Co	unt		Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)									
Total Mercury in Water by CVAAS	E508	403338	1	20	5.0	5.0	✓		
Total Metals in Water by CRC ICPMS	E420	405597	1	20	5.0	5.0	✓		
TSS by Gravimetry	E160	402171	1	20	5.0	5.0	✓		
Turbidity by Nephelometry	E121	402109	1	20	5.0	5.0	✓		
Laboratory Control Samples (LCS)									
Total Mercury in Water by CVAAS	E508	403338	1	20	5.0	5.0	✓		
Total Metals in Water by CRC ICPMS	E420	405597	1	20	5.0	5.0	✓		
TSS by Gravimetry	E160	402171	1	20	5.0	5.0	✓		
Turbidity by Nephelometry	E121	402109	1	20	5.0	5.0	✓		
Method Blanks (MB)									
Total Mercury in Water by CVAAS	E508	403338	1	20	5.0	5.0	✓		
Total Metals in Water by CRC ICPMS	E420	405597	1	20	5.0	5.0	✓		
TSS by Gravimetry	E160	402171	1	20	5.0	5.0	✓		
Turbidity by Nephelometry	E121	402109	1	20	5.0	5.0	✓		
Matrix Spikes (MS)									
Total Mercury in Water by CVAAS	E508	403338	1	20	5.0	5.0	1		
Total Metals in Water by CRC ICPMS	E420	405597	1	20	5.0	5.0	√		

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Vancouver -			
	Environmental			
TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Vancouver -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Environmental			brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
Total Metals in Water by CRC ICPMS	E420	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
	Vancouver -			
	Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
	Vancouver -			
	Environmental			
Hardness (Calculated) from Total Ca/Mg	EC100A	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	Vancouver -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Environmental			calculated from dissolved Calcium and Magnesium concentrations, because it is a
				property of water due to dissolved divalent cations. Hardness from total Ca/Mg is
				normally comparable to Dissolved Hardness in non-turbid waters.

QUALITY CONTROL REPORT

Work Order	VA22A2093	Page	: 1 of 10
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd Nanaimo BC Canada V9S 5X9	Address	∶8081 Lougheed Highway Burnaby, British Columbia Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	:+1 604 253 4188
Project	: Enos1302084	Date Samples Received	:02-Feb-2022 08:45
PO	:	Date Analysis Commenced	:03-Feb-2022
C-O-C number	: 20-986009	Issue Date	:11-Feb-2022 11:01
Sampler	: TR/Chris		
Site	:		
Quote number	: VA2022BCCF1000001		
No. of samples received	: 4		
No. of samples analysed	: 4		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Dee Lee	Analyst	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 10

 Work Order
 : VA22A2093

 Client
 : The British Columbia Conservation Foundation

 Project
 : Enos1302084

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water					Labora	tory Duplicate (D	JP) Report				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 402109)										
KS2200300-001	Anonymous	turbidity		E121	0.10	NTU	<0.10	<0.10	0	Diff <2x LOR	
Physical Tests (QC	Lot: 402171)										
VA22A2085-013	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	27.6	28.8	1.2	Diff <2x LOR	
Total Metals (QC Lo	ot: 403338)										
VA22A2086-002	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Total Metals (QC Lo	t: 405597)										
VA22A2085-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0000050	<0.000050	0	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
		manganese, total	7439-96-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		rubidium, total	7440-17-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		selenium, total	7782-49-2	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		silicon, total	7440-21-3	E420	0.10	mg/L	<0.10	<0.10	0	Diff <2x LOR	
	I	1		1					l i i i i i i i i i i i i i i i i i i i		

Page : 4 of 10 Work Order : VA22A2093 Client : The British Columbia Conservation Foundation Project : Enos1302084

Sub-Matrix: Water						Labora	tory Duplicate (D	UP) Report			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	ot: 405597) - continued										
VA22A2085-001	Anonymous	silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		strontium, total	7440-24-6	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		sulfur, total	7704-34-9	E420	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
		tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
		zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	

Page	: 5 of 10
Work Order	: VA22A2093
Client	: The British Columbia Conservation Foundation
Project	: Enos1302084

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water						
Analyte	CAS Number Meth	hod	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 402109)						
turbidity	E121	1	0.1	NTU	<0.10	
Physical Tests (QCLot: 402171)						
solids, total suspended [TSS]	E160	0	3	mg/L	<3.0	
Total Metals (QCLot: 403338)						
mercury, total	7439-97-6 E508	8	0.000005	mg/L	<0.000050	
Total Metals (QCLot: 405597)						
aluminum, total	7429-90-5 E420	0	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E420	0	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0	0.0001	mg/L	<0.00010	
barium, total	7440-39-3 E420	0	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7 E420	0	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9 E420	0	0.00005	mg/L	<0.000050	
boron, total	7440-42-8 E420	0	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E420	0	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2 E420	0	0.05	mg/L	<0.050	
cesium, total	7440-46-2 E420	0	0.00001	mg/L	<0.000010	
chromium, total	7440-47-3 E420	0	0.0005	mg/L	<0.00050	
cobalt, total	7440-48-4 E420	0	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420	0	0.0005	mg/L	<0.00050	
iron, total	7439-89-6 E420	0	0.01	mg/L	<0.010	
lead, total	7439-92-1 E420	0	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2 E420	0	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4 E420	0	0.005	mg/L	<0.0050	
manganese, total	7439-96-5 E420	0	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7 E420	0	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E420	0	0.0005	mg/L	<0.00050	
phosphorus, total	7723-14-0 E420	0	0.05	mg/L	<0.050	
potassium, total	7440-09-7 E420	0	0.05	mg/L	<0.050	
rubidium, total	7440-17-7 E420	0	0.0002	mg/L	<0.00020	
selenium, total	7782-49-2 E420	0	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E420	0	0.1	mg/L	<0.10	
silver, total	7440-22-4 E420	0	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5 E420	0	0.05	mg/L	<0.050	
I						

Page	: 6 of 10
Work Order	: VA22A2093
Client	: The British Columbia Conservation Foundation
Project	; Enos1302084

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 405597) - continu	ber					
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
tellurium, total	13494-80-9	E420	0.0002	mg/L	<0.00020	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
thorium, total	7440-29-1	E420	0.0001	mg/L	<0.00010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
tungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Physical Tests (QCLot: 402109)											
turbidity		E121	0.1	NTU	200 NTU	98.6	85.0	115			
Physical Tests (QCLot: 402171)											
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	94.6	85.0	115			
Total Metals (QCLot: 403338)											
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	102	80.0	120			
Total Metals (QCLot: 405597)											
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	103	80.0	120			
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	105	80.0	120			
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	102	80.0	120			
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	105	80.0	120			
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	100	80.0	120			
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	102	80.0	120			
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	98.6	80.0	120			
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	100	80.0	120			
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	99.1	80.0	120			
cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	100	80.0	120			
chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	102	80.0	120			
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	102	80.0	120			
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	101	80.0	120			
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	106	80.0	120			
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	99.4	80.0	120			
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	99.3	80.0	120			
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	100	80.0	120			
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	101	80.0	120			
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	100	80.0	120			
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	98.8	80.0	120			
phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	116	80.0	120			
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	101	80.0	120			
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	102	80.0	120			
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	105	80.0	120			
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	106	80.0	120			
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	90.4	80.0	120			
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	100.0	80.0	120			

Page	: 8 of 10
Work Order	: VA22A2093
Client	: The British Columbia Conservation Foundation
Project	; Enos1302084

Sub-Matrix: Water	ub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%) Recover		/ Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Total Metals (QCLot: 405597) - continued												
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	100	80.0	120				
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	109	80.0	120				
tellurium, total	13494-80-9	E420	0.0002	mg/L	0.1 mg/L	98.6	80.0	120				
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	101	80.0	120				
thorium, total	7440-29-1	E420	0.0001	mg/L	0.1 mg/L	102	80.0	120				
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	97.0	80.0	120				
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	103	80.0	120				
tungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	99.9	80.0	120				
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	102	80.0	120				
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	102	80.0	120				
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	97.6	80.0	120				
zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	97.4	80.0	120				

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water			Matrix Spike (MS) Report								
					Spi	ike	Recovery (%)	Recovery	Limits (%)		
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Total Metals (QC	CLot: 403338)										
VA22A2086-003	Anonymous	mercury, total	7439-97-6	E508	0.0000934 mg/L	0.0001 mg/L	93.4	70.0	130		
Total Metals (QC	CLot: 405597)										
VA22A2085-002	Anonymous	aluminum, total	7429-90-5	E420	0.190 mg/L	0.2 mg/L	95.1	70.0	130		
		antimony, total	7440-36-0	E420	0.0194 mg/L	0.02 mg/L	97.0	70.0	130		
		arsenic, total	7440-38-2	E420	0.0191 mg/L	0.02 mg/L	95.5	70.0	130		
		barium, total	7440-39-3	E420	0.0195 mg/L	0.02 mg/L	97.3	70.0	130		
		beryllium, total	7440-41-7	E420	0.0386 mg/L	0.04 mg/L	96.6	70.0	130		
		bismuth, total	7440-69-9	E420	0.0100 mg/L	0.01 mg/L	100	70.0	130		
		boron, total	7440-42-8	E420	0.100 mg/L	0.1 mg/L	100	70.0	130		
		cadmium, total	7440-43-9	E420	0.00397 mg/L	0.004 mg/L	99.2	70.0	130		
		calcium, total	7440-70-2	E420	3.86 mg/L	4 mg/L	96.4	70.0	130		
		cesium, total	7440-46-2	E420	0.0101 mg/L	0.01 mg/L	101	70.0	130		
		chromium, total	7440-47-3	E420	0.0398 mg/L	0.04 mg/L	99.6	70.0	130		
		cobalt, total	7440-48-4	E420	0.0196 mg/L	0.02 mg/L	98.0	70.0	130		
		copper, total	7440-50-8	E420	0.0197 mg/L	0.02 mg/L	98.7	70.0	130		
		iron, total	7439-89-6	E420	1.96 mg/L	2 mg/L	98.0	70.0	130		
		lead, total	7439-92-1	E420	0.0189 mg/L	0.02 mg/L	94.7	70.0	130		
		lithium, total	7439-93-2	E420	0.0953 mg/L	0.1 mg/L	95.3	70.0	130		
		magnesium, total	7439-95-4	E420	0.952 mg/L	1 mg/L	95.2	70.0	130		
		manganese, total	7439-96-5	E420	0.0197 mg/L	0.02 mg/L	98.4	70.0	130		
		molybdenum, total	7439-98-7	E420	0.0198 mg/L	0.02 mg/L	99.2	70.0	130		
		nickel, total	7440-02-0	E420	0.0393 mg/L	0.04 mg/L	98.2	70.0	130		
		phosphorus, total	7723-14-0	E420	9.27 mg/L	10 mg/L	92.7	70.0	130		
		potassium, total	7440-09-7	E420	3.81 mg/L	4 mg/L	95.3	70.0	130		
		rubidium, total	7440-17-7	E420	0.0200 mg/L	0.02 mg/L	100.0	70.0	130		
		selenium, total	7782-49-2	E420	0.0414 mg/L	0.04 mg/L	104	70.0	130		
		silicon, total	7440-21-3	E420	9.90 mg/L	10 mg/L	99.0	70.0	130		
		silver, total	7440-22-4	E420	0.00393 mg/L	0.004 mg/L	98.2	70.0	130		
		sodium, total	7440-23-5	E420	1.94 mg/L	2 mg/L	96.9	70.0	130		
		strontium, total	7440-24-6	E420	0.0198 mg/L	0.02 mg/L	99.0	70.0	130		
1	1	sulfur, total	7704-34-9	E420	18.8 mg/L	20 mg/L	94.2	70.0	130		

Page: 10 of 10Work Order: VA22A2093Client: The British Columbia Conservation FoundationProject: Enos1302084

Sub-Matrix: Water	ub-Matrix: Water					Matrix Spike (MS) Report						
					Spike		Recovery (%)	Recovery Limits (%)				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Total Metals (QC	Lot: 405597) - continue	d										
VA22A2085-002	Anonymous	tellurium, total	13494-80-9	E420	0.0401 mg/L	0.04 mg/L	100	70.0	130			
		thallium, total	7440-28-0	E420	0.00382 mg/L	0.004 mg/L	95.4	70.0	130			
		thorium, total	7440-29-1	E420	0.0214 mg/L	0.02 mg/L	107	70.0	130			
		tin, total	7440-31-5	E420	0.0190 mg/L	0.02 mg/L	95.0	70.0	130			
		titanium, total	7440-32-6	E420	0.0398 mg/L	0.04 mg/L	99.5	70.0	130			
		tungsten, total	7440-33-7	E420	0.0192 mg/L	0.02 mg/L	96.0	70.0	130			
		uranium, total	7440-61-1	E420	0.00400 mg/L	0.004 mg/L	100	70.0	130			
		vanadium, total	7440-62-2	E420	0.0969 mg/L	0.1 mg/L	96.9	70.0	130			
		zinc, total	7440-66-6	E420	0.379 mg/L	0.4 mg/L	94.7	70.0	130			
		zirconium, total	7440-67-7	E420	0.0398 mg/L	0.04 mg/L	99.6	70.0	130			

Chain of Custody (COC) / Analytical Request Form

COC Number: 20 - 986009

Page of

AUG 2020 FRONT

Canada Toll Free: 1 800 668 9878

Report To	Contact and company name below will a	ppear on the final report		Reports / Re	ecipients		Turnaround Time (TAT) Requested				Ì	and the second			GASSEN .				
Company:	BC Conservation F	dia.	Select Report Fo	armat: Y PDF			Routine [R] if received by 3pm . M-F no surcharges apply							and the second s	<u> 3865 -</u>	<u> Alexandre de la composición de la composicinde la composición de la composición de la composición de</u>			
Contact:	Theo Rodsero		Merge QC/QC	Merge QC/QCI Reports with COA T YES INO N/A					ceived by	Bpm M-F-2	0% rush	surcharge m	inimum			1997 (Bass	k. L	Ŵ	
Phono:-	250-3911-2525 x. 101	f	- Сотпрате кези	its to Criteria on Report - pr	ovide details below if	box checked	O day [P3] if received by Spin M-F + 25% rush surcharge minimum Al FIX ALC DARC IAI S					HODE L	ABELH	ERE					
	Company address below will appear on the	inal report	Select Distribution	elect Distribution: 🕅 EMAIL 🗋 MAIL 🗖 FAX					2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum							and the second second			
Street:	#105-1885 Boxwood K	load	Email 1 or Fax	trodaer	sebcc	f.com	□ 2 duy [c] infective by 5µm minimum to be a degree						5. Mat ika 1						
City/Province:	Nanaimo, BC		Email 2						may apply to rush requests on weekends, statutory holidays and non-routine tests						in the				
Postal Code:	<u>V9</u>	·	Email 3	ail 3					Date and Time Required for all E&P TATs: dd-mmm-yy_hh:mm_am/pm										
Invoice To	Same as Report To YES	D NO		Invoice Re	cipients		For all tests with rush TATs requested, please contact your AM to confirm availability.												
	Copy of Invoice with Report	NO NO	Select Invoice Di	istribution: 🗙 EM/		FAX					_					· · · · -	` `````		
Company:		•	Email 1 or Fax				181		Indicat	e Filtered (F),	Pj	Envire	onme	ntal	Divisi		Ľ	6	es)
Contact:			Email 2	llimerid	<u> e bect</u>	von	ᆝ필ㅣ		<u>↓</u> · ↓		Į.	Vanco	ouver		- 1013I	511	j.	١¥	ğ
	Project Information		C	Dil and Gas Required	Fields (client us	ie)	121	<u> </u>			1	Wor.	k Orde	r Refe	erence			ן פֿ	ee
ALS Account # /	Quote # VA2022 BCCF /	000001	AFE/Cost Center:		PO#		<u>5</u>	in the	14	>	1	- V/	<i>۹2%</i>	λ	200	o	12	<u> </u>	s)
Job #: Enos	1302084		Major/Minor Code:		Routing Code:		ĮÕĮ	10 1	13					-/ 12	-03	3		έĮΫ	ÅR I
PO/AFE:			Requisitioner:				121	5	ă l		į		il e	id N	45 m ()	44	≓ ₹	< 8	Ϋ́ς Ι
LSD:			Location:				Ī	<u></u>	15		1		Ϊſ.	° ,;	2.2//			15	E E
ALS Lab Work	c Order # (ALS use only):	1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -	ALS Contact:	snena s.	Sampler: Tr	R/Chris	BER	10	エ					dell.			jŭ J		ECTEI
ALS Sample #	Sample Identificat	on and/or Coordinates		Date	Time	Commits Trans	1₹1	5 9	12				<u>, </u>	ųμ	3.	1		≨ ⊟	SP
(ALS use only)	(This description w	ill appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	Ī	2-3-	- - -		Tel	ephone ·		0 0 16		1	ت ا	<u>à ă</u>	ns
ger, ist	Swmp 03 - Im			01.02-22	10:4D	Water	21	\checkmark				produce .	+1004	253 410	19				
	SUMMPO3-IM	rep		01-02-22	10:43	Water	2	$\overline{\mathbf{v}}$					"] - ~	1	· • •	•n - ∋1			
29 mg	SWMP 03 - 5m			01-02-22	10:48	Water	3		V									Т	
	Swmp 03 - 10	m		01-02-22	10,84	Water	2	V											
and the second	· · ·		×						~	~ *		,							\square
The second second		· · · · · · · · · · · · · · · · · · ·						1.		A									
a. ** •**								K I.	no	1717	ru l	101	PAU	un	21 ·	-		-	
								<u> </u>											+ - 1
Serve Serve	······································																		
		····		· ·				-										+-	+ - 1
5. 18 M. 18 M.																++			
and Maria														7					1-1
Drinklag	Motor (Dit) Semples ¹ (diant use)	Notes / Specil	y Limits for result (evaluation by selecting	from drop-down l	below	- 1995 1995	NINARA .		SAI	VIPLE R	ECEIRT	DET AIL	S (ALS	use only) 30%	63X.	3999A	453.
Drinking	Trater (Div) Samples (client bse)	<u></u>	(E	Excel COC only)			Coolin	g Method:		NONE] [> ICE		ACKS 🕅] ≋ FRO	ZEN 👯	<u>کې ، ات ،</u>	LING IN	TIATED	en 🕎
Are samples taken	from a Regulated DW System?	None are	field 1	filtered -	to redui	1	Subm	ission Con	nments i	dentified o	n Samp	le Receip	Notifica	ation	<u>ا الم الم الم الم الم الم الم الم الم ال</u>] YES 🐛		<u> </u>	a marting
					~	Coole	r Custody	Seals In	tact:	YES		Sam	le Cus	lody Seal	s Intact:		YES: [] N/A	
Nounaury. Please filter presence ASTP.					HP.	inter Variation	INIITIA	L COOLE	R TEMPERA	TURES 9		R (82.) (3 (1993)	1.15	INAL COOL	ER TEMPE	ATURE	<u>S°C ~~∞</u> ⊛	2559). 7777 - 14 46440	
		/ /	an the support of the second	INTER CHIPMEN					Meinet	N.R.		*{{\$\$	i. 🦉	/ %(<u></u>	
Released by:		e) Time:	Received by	INITIAL SHIPMENT	RECEPTION (AI	.5 use only)	Time			(構成)。 入学)//	FINAL	SHIPME	NT REQ	EPTIO	N (ALS U	se only)	8		e.etsext
	(K. -01-C	a- and 1330	All and a second		and the second	and the second				YCK	Ser C		-H	20	210	+2	3	S??	15

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY YELLOW - CLIENT COPY

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. if any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

CERTIFICATE OF ANALYSIS

Work Order	: VA22A2563	Page	: 1 of 4
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby BC Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	+1 604 253 4188
Project	: ENOS 1302084	Date Samples Received	: 09-Feb-2022 08:40
PO	:	Date Analysis Commenced	: 10-Feb-2022
C-O-C number	: 20-986002	Issue Date	: 18-Feb-2022 16:20
Sampler	:		
Site	:		
Quote number	: VA2022BCCF1000001		
No. of samples received	: 4		
No. of samples analysed	: 4		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Dee Lee	Analyst	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
mg/L	milligrams per litre
NTU	nephelometric turbidity units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Water Client sample					SWMP 03-1m	SWMP 03-5m	SWMP 03-5m	SWMP 03-10m	
(Matrix: Water)							duplicate		
			Client samp	ling date / time	08-Feb-2022 10:00	08-Feb-2022 10:05	08-Feb-2022 10:08	08-Feb-2022 10:15	
Analyte	CAS Number	Method	LOR	Unit	VA22A2563-001	VA22A2563-002	VA22A2563-003	VA22A2563-004	
					Result	Result	Result	Result	
Physical Tests									
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	41.1	41.5	41.8	41.7	
solids, total suspended [TSS]		E160	3.0	mg/L		<3.0			
turbidity		E121	0.10	NTU		1.40			
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0580	0.0617	0.0581	0.0642	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00018	0.00018	0.00017	0.00018	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0145	0.0145	0.0144	0.0144	
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.018	0.019	0.019	0.019	
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
calcium, total	7440-70-2	E420	0.050	mg/L	14.0	14.1	14.2	14.2	
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
copper, total	7440-50-8	E420	0.00050	mg/L	0.00154	0.00158	0.00145	0.00134	
iron, total	7439-89-6	E420	0.010	mg/L	0.132	0.141	0.139	0.144	
lead, total	7439-92-1	E420	0.000050	mg/L	0.000981	0.000430	0.000234	0.000097	
lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	
magnesium, total	7439-95-4	E420	0.0050	mg/L	1.49	1.54	1.53	1.52	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0248	0.0257	0.0256	0.0263	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000176	0.000174	0.000190	0.000172	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	
potassium, total	7440-09-7	E420	0.050	mg/L	0.290	0.297	0.299	0.296	
rubidium, total	7440-17-7	E420	0.00020	- mg/L	0.00036	0.00041	0.00040	0.00038	
selenium, total	7782-49-2	E420	0.000050	mg/L	0.000111	<0.000050	0.000087	0.000086	
silicon, total	7440-21-3	E420	0.10	mg/L	3.40	3.44	3.44	3.49	
I	1		1	i - I		1	1	I	I

Analytical Results

Sub-Matrix: Water		C	lient sample ID	SWMP 03-1m	SWMP 03-5m	SWMP 03-5m	SWMP 03-10m	
(Matrix: Water)						duplicate		
		Client samp	oling date / time	08-Feb-2022 10:00	08-Feb-2022 10:05	08-Feb-2022 10:08	08-Feb-2022 10:15	
Analyte CAS N	mber Method	LOR	Unit	VA22A2563-001	VA22A2563-002	VA22A2563-003	VA22A2563-004	
				Result	Result	Result	Result	
Total Metals								
silver, total 744(22-4 E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, total 7440	23-5 E420	0.050	mg/L	6.74	6.87	6.80	6.82	
strontium, total 7440	24-6 E420	0.00020	mg/L	0.0416	0.0423	0.0421	0.0408	
sulfur, total 7704	34-9 E420	0.50	mg/L	1.50	1.59	1.65	1.69	
tellurium, total 13494	80-9 E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	
thallium, total 7440	28-0 E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
thorium, total 7440	29-1 E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
tin, total 7440	31-5 E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, total 7440	32-6 E420	0.00030	mg/L	0.00204	0.00230	0.00217	0.00237	
tungsten, total 7440	33-7 E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
uranium, total 744(61-1 E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
vanadium, total 7440	62-2 E420	0.00050	mg/L	0.00050	0.00052	0.00051	<0.00050	
zinc, total 7440	66-6 E420	0.0030	mg/L	0.0055	0.0042	<0.0030	<0.0030	
zirconium, total 7440	67-7 E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: VA22A2563	Page	: 1 of 6
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby, British Columbia Canada V5A 1W9
Telephone	250-390-2525	Telephone	: +1 604 253 4188
Project	: ENOS 1302084	Date Samples Received	: 09-Feb-2022 08:40
PO	:	Issue Date	: 18-Feb-2022 16:20
C-O-C number	: 20-986002		
Sampler	:		
Site	:		
Quote number	: VA2022BCCF1000001		
No. of samples received	: 4		
No. of samples analysed	: 4		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: × =	Holding time excee	edance ; 🔹		Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation		Analysis		is	
Container / Client Sample ID(s)			Preparation	Holding	, Times	Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry										
HDPE										
SWMP 03-5m	E160	08-Feb-2022					10-Feb-2022	7 days	2 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
SWMP 03-5m	E121	08-Feb-2022					11-Feb-2022	3 days	3 days	1
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										,
SWMP 03-10m	E508	08-Feb-2022					12-Feb-2022	28 days	4 days	~
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)	5500	00 5-1 0000						00.1	4 1	,
SWMP 03-1m	E208	08-FeD-2022					12-Feb-2022	28 days	4 days	•
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)	E508	08 Eab 2022					12 Eab 2022	28 days	1 dave	1
SWWF 03-511	L300	00-1 60-2022					12-1 60-2022	20 uays	4 uays	•
Class viel, tetal (leb preserved)	1									
SWMP 03-5m dunlicate	F508	08-Feb-2022					12-Feb-2022	28 days	4 days	1
	2000	001001011						20 44,0	, aayo	
Total Motale : Total Motale in Water by CPC ICPMS										
HDPF - total (lab preserved)										
SWMP 03-10m	E420	08-Feb-2022					17-Feb-2022	180	9 days	1
								days	,	

Matrix: Water					E١	aluation: × =	Holding time excee	edance ; •	= Within	Holding Time
Analyte Group	Method	Sampling Date	Extraction / Preparation					Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times Eval	
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved) SWMP 03-1m	E420	08-Feb-2022					17-Feb-2022	180 days	9 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved) SWMP 03-5m	E420	08-Feb-2022					17-Feb-2022	180 days	9 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved) SWMP 03-5m duplicate	E420	08-Feb-2022					17-Feb-2022	180 days	9 days	✓

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water	Evaluation: \star = QC frequency outside specification; \star = QC frequency within specification.									
Quality Control Sample Type			Co	unt		Frequency (%)				
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation			
Laboratory Duplicates (DUP)										
Total Mercury in Water by CVAAS	E508	408734	1	20	5.0	5.0	✓			
Total Metals in Water by CRC ICPMS	E420	412258	1	20	5.0	5.0	✓			
TSS by Gravimetry	E160	407001	1	20	5.0	5.0	✓			
Turbidity by Nephelometry	E121	408280	1	20	5.0	5.0	✓			
Laboratory Control Samples (LCS)										
Total Mercury in Water by CVAAS	E508	408734	1	20	5.0	5.0	✓			
Total Metals in Water by CRC ICPMS	E420	412258	1	20	5.0	5.0	✓			
TSS by Gravimetry	E160	407001	1	20	5.0	5.0	✓			
Turbidity by Nephelometry	E121	408280	1	20	5.0	5.0	✓			
Method Blanks (MB)										
Total Mercury in Water by CVAAS	E508	408734	1	20	5.0	5.0	✓			
Total Metals in Water by CRC ICPMS	E420	412258	1	20	5.0	5.0	✓			
TSS by Gravimetry	E160	407001	1	20	5.0	5.0	✓			
Turbidity by Nephelometry	E121	408280	1	20	5.0	5.0	✓			
Matrix Spikes (MS)										
Total Mercury in Water by CVAAS	E508	408734	1	20	5.0	5.0	1			
Total Metals in Water by CRC ICPMS	E420	412258	1	20	5.0	5.0	 ✓ 			

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Vancouver -			
	Environmental			
TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Vancouver -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Environmental			brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
Total Metals in Water by CRC ICPMS	E420	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
	Vancouver -			
	Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
	Vancouver -			
	Environmental			
Hardness (Calculated) from Total Ca/Mg	EC100A	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	Vancouver -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Environmental			calculated from dissolved Calcium and Magnesium concentrations, because it is a
				property of water due to dissolved divalent cations. Hardness from total Ca/Mg is
				normally comparable to Dissolved Hardness in non-turbid waters.

QUALITY CONTROL REPORT

Work Order	VA22A2563	Page :	1 of 10
Client	: The British Columbia Conservation Foundation	Laboratory	:Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd Nanaimo BC Canada V9S 5X9	Address	8081 Lougheed Highway Burnaby, British Columbia Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	+1 604 253 4188
Project	: ENOS 1302084	Date Samples Received	:09-Feb-2022 08:40
PO	:	Date Analysis Commenced	: 10-Feb-2022
C-O-C number	: 20-986002	Issue Date	: 18-Feb-2022 16:20
Sampler	:		
Site	:		
Quote number	: VA2022BCCF1000001		
No. of samples received	: 4		
No. of samples analysed	:4		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Dee Lee	Analyst	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 10

 Work Order
 : VA22A2563

 Client
 : The British Columbia Conservation Foundation

 Project
 : ENOS 1302084

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 407001)										
VA22A2543-004	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 408280)										
KS2200376-001	Anonymous	turbidity		E121	0.10	NTU	<0.10	<0.10	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 408734)										
VA22A2502-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.0000050	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 412258)										
FJ2200379-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0030	0.0040	0.0010	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00010	0.00012	0.00002	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00011	<0.00010	0.000009	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.108	0.112	3.46%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0000218	0.0000263	0.0000046	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	52.1	52.8	1.26%	20%	
		cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0063	0.0064	0.00008	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	14.0	14.2	1.36%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00108	0.00104	3.77%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00270	0.00272	0.814%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	0.425	0.422	0.003	Diff <2x LOR	
		rubidium, total	7440-17-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		selenium, total	7782-49-2	E420	0.000050	mg/L	0.000795	0.000908	13.3%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	1.73	1.78	2.87%	20%	
	I contract the second se		1 contract of the second se	I				I	1		

Page : 4 of 10 Work Order : VA22A2563 Client : The British Columbia Conservation Foundation Project : ENOS 1302084

Sub-Matrix: Water	ıb-Matrix: Water				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	ot: 412258) - continued										
FJ2200379-001	Anonymous	silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	2.52	2.48	1.56%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.247	0.249	0.775%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	10.8	11.6	6.45%	20%	
		tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.000471	0.000489	3.85%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
		zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water						
Analyte	CAS Number N	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 407001)						
solids, total suspended [TSS]	E	E160	3	mg/L	<3.0	
Physical Tests (QCLot: 408280)						
turbidity	E	E121	0.1	NTU	<0.10	
Total Metals (QCLot: 408734)						
mercury, total	7439-97-6 E	E508	0.000005	mg/L	<0.000050	
Total Metals (QCLot: 412258)						
aluminum, total	7429-90-5 E	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E	E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3 E	E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7 E	E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9 E	E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8 E	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E	E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2 E	E420	0.05	mg/L	<0.050	
cesium, total	7440-46-2 E	E420	0.00001	mg/L	<0.000010	
chromium, total	7440-47-3 E	E420	0.0005	mg/L	<0.00050	
cobalt, total	7440-48-4 E	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E	E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6 E	E420	0.01	mg/L	<0.010	
lead, total	7439-92-1 E	E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2 E	E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4 E	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5 E	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7 E	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E	E420	0.0005	mg/L	<0.00050	
phosphorus, total	7723-14-0 E	E420	0.05	mg/L	<0.050	
potassium, total	7440-09-7 E	E420	0.05	mg/L	<0.050	
rubidium, total	7440-17-7 E	E420	0.0002	mg/L	<0.00020	
selenium, total	7782-49-2 E	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4 E	E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5 E	E420	0.05	mg/L	<0.050	
1 Contraction of the second				l i i i i i i i i i i i i i i i i i i i	I	l i i i i i i i i i i i i i i i i i i i

Page	: 6 of 10
Work Order	: VA22A2563
Client	: The British Columbia Conservation Foundation
Project	: ENOS 1302084

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 412258) - continu	ed					
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
tellurium, total	13494-80-9	E420	0.0002	mg/L	<0.00020	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
thorium, total	7440-29-1	E420	0.0001	mg/L	<0.00010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
tungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
						Recovery (%)	very (%) Recovery Limits		its (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Physical Tests (QCLot: 407001)										
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	93.8	85.0	115		
Physical Tests (QCLot: 408280)										
turbidity		E121	0.1	NTU	200 NTU	100	85.0	115		
Total Metals (QCLot: 408734)										
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	97.1	80.0	120		
Total Metals (QCLot: 412258)										
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	101	80.0	120		
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	110	80.0	120		
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	106	80.0	120		
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	101	80.0	120		
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	104	80.0	120		
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	106	80.0	120		
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	99.3	80.0	120		
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	99.9	80.0	120		
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	100	80.0	120		
cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	102	80.0	120		
chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	104	80.0	120		
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	103	80.0	120		
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	102	80.0	120		
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	102	80.0	120		
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	108	80.0	120		
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	105	80.0	120		
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	104	80.0	120		
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	102	80.0	120		
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	107	80.0	120		
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	100	80.0	120		
phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	111	80.0	120		
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	107	80.0	120		
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	107	80.0	120		
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	104	80.0	120		
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	100	80.0	120		
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	95.3	80.0	120		
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	103	80.0	120		

Page: 8 of 10Work Order: VA22A2563Client: The British Columbia Conservation FoundationProject: ENOS 1302084

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery (%) Recovery Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Total Metals (QCLot: 412258) - continued										
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	99.5	80.0	120		
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	103	80.0	120		
tellurium, total	13494-80-9	E420	0.0002	mg/L	0.1 mg/L	107	80.0	120		
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	109	80.0	120		
thorium, total	7440-29-1	E420	0.0001	mg/L	0.1 mg/L	100	80.0	120		
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	103	80.0	120		
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	100	80.0	120		
tungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	106	80.0	120		
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	106	80.0	120		
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	106	80.0	120		
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	107	80.0	120		
zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	102	80.0	120		

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water				Matrix Spike (MS) Report						
					Spike		Recovery (%)	Recovery Limits (%)		
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Total Metals (QC	CLot: 408734)									
VA22A2502-002	Anonymous	mercury, total	7439-97-6	E508	0.0000932 mg/L	0.0001 mg/L	93.2	70.0	130	
Total Metals (QC	CLot: 412258)									
FJ2200379-002 Anonymous	Anonymous	aluminum, total	7429-90-5	E420	0.187 mg/L	0.2 mg/L	93.4	70.0	130	
	antimony, total	7440-36-0	E420	0.0202 mg/L	0.02 mg/L	101	70.0	130		
		arsenic, total	7440-38-2	E420	0.0201 mg/L	0.02 mg/L	101	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.0383 mg/L	0.04 mg/L	95.7	70.0	130	
		bismuth, total	7440-69-9	E420	0.00949 mg/L	0.01 mg/L	94.9	70.0	130	
		boron, total	7440-42-8	E420	0.096 mg/L	0.1 mg/L	95.8	70.0	130	
		cadmium, total	7440-43-9	E420	0.00382 mg/L	0.004 mg/L	95.5	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
	cesium, total	7440-46-2	E420	0.00990 mg/L	0.01 mg/L	99.0	70.0	130		
	chromium, total	7440-47-3	E420	0.0398 mg/L	0.04 mg/L	99.5	70.0	130		
		cobalt, total	7440-48-4	E420	0.0192 mg/L	0.02 mg/L	96.0	70.0	130	
		copper, total	7440-50-8	E420	0.0189 mg/L	0.02 mg/L	94.4	70.0	130	
		iron, total	7439-89-6	E420	1.89 mg/L	2 mg/L	94.4	70.0	130	
		lead, total	7439-92-1	E420	0.0195 mg/L	0.02 mg/L	97.4	70.0	130	
		lithium, total	7439-93-2	E420	0.0942 mg/L	0.1 mg/L	94.2	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.0190 mg/L	0.02 mg/L	95.0	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0204 mg/L	0.02 mg/L	102	70.0	130	
		nickel, total	7440-02-0	E420	0.0371 mg/L	0.04 mg/L	92.7	70.0	130	
		phosphorus, total	7723-14-0	E420	10.1 mg/L	10 mg/L	101	70.0	130	
		potassium, total	7440-09-7	E420	3.94 mg/L	4 mg/L	98.4	70.0	130	
		rubidium, total	7440-17-7	E420	0.0192 mg/L	0.02 mg/L	96.2	70.0	130	
		selenium, total	7782-49-2	E420	0.0418 mg/L	0.04 mg/L	104	70.0	130	
		silicon, total	7440-21-3	E420	9.24 mg/L	10 mg/L	92.4	70.0	130	
		silver, total	7440-22-4	E420	0.00380 mg/L	0.004 mg/L	95.1	70.0	130	
		sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
1	1	sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130	
Page: 10 of 10Work Order: VA22A2563Client: The British Columbia Conservation FoundationProject: ENOS 1302084

Sub-Matrix: Water		Matrix Spike (MS) Report								
					Spi	ke	Recovery (%) Recovery		Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Total Metals (QC	Lot: 412258) - continue	d								
FJ2200379-002	Anonymous	tellurium, total	13494-80-9	E420	0.0386 mg/L	0.04 mg/L	96.6	70.0	130	
		thallium, total	7440-28-0	E420	0.00388 mg/L	0.004 mg/L	97.0	70.0	130	
		thorium, total	7440-29-1	E420	0.0217 mg/L	0.02 mg/L	109	70.0	130	
		tin, total	7440-31-5	E420	0.0198 mg/L	0.02 mg/L	99.2	70.0	130	
		titanium, total	7440-32-6	E420	0.0406 mg/L	0.04 mg/L	102	70.0	130	
		tungsten, total	7440-33-7	E420	0.0206 mg/L	0.02 mg/L	103	70.0	130	
		uranium, total	7440-61-1	E420	0.00394 mg/L	0.004 mg/L	98.5	70.0	130	
		vanadium, total	7440-62-2	E420	0.101 mg/L	0.1 mg/L	101	70.0	130	
		zinc, total	7440-66-6	E420	0.383 mg/L	0.4 mg/L	95.9	70.0	130	
		zirconium, total	7440-67-7	E420	0.0402 mg/L	0.04 mg/L	101	70.0	130	

Chain of Custody (COC) / Analytical Request Form

COC Number: 20 - 986002

of

:

1 | į ٠

Canada Toll Free: 1 800 668 9878

Report To	Contact and company name below will appe	ar on the final report	_	Reports / R	Recipients		Turnaround Time (TAT) Requested				sted		Environmental Division							
Company:	BC Consenation FC	undation	Select Report Fo	ormat: 🖌 PDF		D (DIGITAL)	N RO	utine [R] if rec	ceived by	3pm M-	F- <u>nos</u>	urcharges	apply		Vancouver					
Contact:	Thea Rodgers.		Merge QC/QC	I Reports with COA	ʻ'ββ(TYES ⊡ NO	□ N/A	∕⊡`₄₀	day [P4] if reco	eived by 3	3 pm M-1	- 20%	rush surcl	harge min	imum (Work	: Order	r Refer	ence	5
Phone:	- DOC 390 JKZT OXA		- Compare Rocy	Its to Criteria on Report - r	provide details below if t	bex-eheoked		<u>tay [P3] if rec</u>	ceived by	3pm_M.	F - 25%	rush.surr	barge mi	nimum		_∀#	XZ'Z	182	50	<u>13</u>
· · · · · · · · · · · · · · · · · · ·	Company address below will appear on the fina	report	Select Distribution	on: DA BMAIL	MAIL D. P	AX		bay [F∠]n rec tav fEl if rece	eived by 3	om M-F	- 100%	rush suro	harge mi	nimumi						
Street:	#105-1885 BOXWOOD	ROAD	Email 1 or Fax	trodger	SO beef	·Com] 	me day [E2] if	received	by 10am	M-S - 20	00% rush :	surcharge.	Additio				ñьні	9. E	
City/Province:	NANA(MO BC	,	Email 2	Email 2					requests	on week	ends, stat	tutory holic	lays and r	ion-rout				1 DIT		/111
Postal Code:	VIASEXA		Email 3					Date and Tim	e Requir	ed for a	1 E&P T#	ATs:		1			NG (-Reall		(111
Invoice To	Same as Report To			Invoice R	ecipients				For	ali tests	with rush	I TATs requ	uested, pla	ase cor		11	1.1	5'I (53	
	Copy of Invoice with Report YES	<u>NO</u>	Select Invoice D	istribution: 🕱 🗗	MAIL 🗖 MAIL 🔲	FAX	Analysis Reg				s Regi		111		81 6		1 11 1			
Company:			Email 1 or Fax				18		Indicat	e Filtered	(F), Pre	served (P) or Filter	ed and I	٦	Felephony	a:+16	04 253 4	188	
Contact:			Email 2	llimerich	LO WCE.	(om	필								1					
	Project Information			Dil and Gas Require	d Fields (client us	e)	₹			1				.	<u>}</u>				<u></u>	8
ALS Account # /	Quote # VA2022 BCCF [00	2001	AFE/Cost Center:	· · · · · · · · · · · · · · · · · · ·	PO#		5	+	3	Ľ)							님		2
JOD#: ENO	15 1302084		Major/Minor Code:		Routing Code:		<u>]</u> õ	<u>ک</u>	13	Q.								£	۳ ۱	ĬĔ
PO/AFE:	·		Requisitioner:					포진	17	0							-	Z	l R	1 Š I
LSD:			Location:				ō	हैं है	1 2	Y									ST	T T
ALS Lab Work	c Order # (ALS use only):	A2563	ALS Contact: Shella, Sampler: AA/TR.				BER	ard	217	71								LE PLE	DED	CTE
ALS Sample # (ALS use only)	Sample Identification (This description will	and/or Coordinates		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	MUN		1 T	R								SAM	EXTER	Idsus
the second star	SWMP 03 - IM	··· ····		100-00	10:00	(Natar	2		レイ									-		\mathbf{T}
aller Wey	SWMP 03 -5m	$\frac{1}{10000000000000000000000000000000000$					3							1					1	
	Swmp 03 - 5m	duplicate	$d_{11} \rho_1 \rho_2 = \rho_1 \rho_2 \rho_2 \rho_1 \rho_2 \rho_2 \rho_1 \rho_2 \rho_2 \rho_1 \rho_2 \rho_1 \rho_2 \rho_2 \rho_2 \rho_1 \rho_2 \rho_2 \rho_2 \rho_2 \rho_2 \rho_2 \rho_2 \rho_2 \rho_2 \rho_2$,		<u></u>		<u> </u>			\square
14. A.S. (18)	Swmp az = 10m			08-07	10:15	i,	2		\checkmark			-	1						-	
AND THE REAL				0.0-00	10 . 5		ľ						1_						1	
30 A.		· · · · · · · · · · · · · · · · · · ·							1.	4	71	tit	10	h						\square
								-7	Ŵ	19	pμ			1						
100 mil		······································							F	in 1	AL	un	01.	<u> </u>						
		· · · · · · · · · · · · · · · · · · ·				e				¥¥	"U						+			
s. 92% sak																			1	
	· · ·																†		-	
196 - 1999 A.					· · ·										/		†-			<u>†</u> 1
Drinking	Water (DW) Samples ¹ (client use)	se) Notes / Specify Limits for result evaluation by selecting from drop-down below [(Excel COC only)						ng Method:	a No.	NONE			EIPT D		S (ALS U	se only) N			TIATED	
Are samples taken	from a Regulated DW System?	Olacce fill	. Q.C + Q.i.	AO AI	• •		Subm	ission Com	ments i	dentifie	d on S	ample F	Receipt	Notifica	ition:		YES	INO	1988-co	S.C.
C YES	UVES IND IPIEUSE MITTER PROSEINCE ASAP.						Coole	r Custody S	Seals In	tact:		YES [Samp	le Custo	dy Seals	intact:		res 🗆	N/A 🕷
Are samples for hu	mples for human consumption/ use?						188-88+		COOLE	r temp	ERATUR	ES °C 🗞		WESSEN.	17	AL COOLE	RTEMPE	RATURES	°C 🕸	
Yes	5 D NO						1993-1888			an Dest		anno Bantonic	78. 1981.		10 1		R. Sala	1	1994 - 1995 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -	*##¥
	SHIPMENT RELEASE (client use)		Alla, a 1	INITIAL SHIPMEN	TRECEPTION (AL	S use only) 🖄	WA.466		t. 200.	well.	sa Fi	NALSH	IPMEN	TREC	EPTION	ALS USE	only) *			<u>.</u>
Released by:	released by: TR Date: 02/08/2022 Time: Received by: Date: Time: Received by: Received by: Date: Time: Received by: Received by: Date: Time: Received by: Received																			
REFER TO BACK P	AGE FOR ALS LOCATIONS AND SAMPLING IN		27899 Adda - 1959	WHI			V - CLIF	NT COPY		η in the second	`}- "				$\mathbf{\Sigma}_{\mathbf{z}}$	<u> c</u>	7.0.205		AUG	2020 FRONT

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY YELLOW - CLIENT COPY

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

CERTIFICATE OF ANALYSIS

Work Order	: VA22A3162	Page	: 1 of 6
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby BC Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	+1 604 253 4188
Project	: ENOS 1302084	Date Samples Received	: 16-Feb-2022 08:45
PO	:	Date Analysis Commenced	: 17-Feb-2022
C-O-C number	: 20-986008	Issue Date	: 28-Feb-2022 16:42
Sampler	: DS, TR		
Site	:		
Quote number	: VA2022BCCF1000001		
No. of samples received	: 6		
No. of samples analysed	: 6		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
µg/L	micrograms per litre
mg/L	milligrams per litre
NTU	nephelometric turbidity units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Sub-Matrix: Water			Cli	ient sample ID	SWMP-1m	SWMP-1m Rep	SWMP-5m	SWMP-5m Rep	SWMP-10m
(Matrix: Water)									
			Client sampl	ling date / time	15-Feb-2022	15-Feb-2022	15-Feb-2022	15-Feb-2022	15-Feb-2022
Analyte	CAS Number	Method	LOR	Unit	VA22A3162-001	VA22A3162-002	VA22A3162-003	VA22A3162-004	VA22A3162-005
					Result	Result	Result	Result	Result
Physical Tests									
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	44.0		44.0		45.9
solids, total suspended [TSS]		E160	3.0	mg/L			<3.0	<3.0	
turbidity		E121	0.10	NTU			1.24	1.26	
Anions and Nutrients									
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L		0.0011	<0.0010	<0.0010	0.0013
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0097		0.0089		0.0092
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0516		0.0545		0.0596
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010		<0.00010		<0.00010
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00018		0.00019		0.00015
barium, total	7440-39-3	E420	0.00010	mg/L	0.0156		0.0156		0.0156
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100		<0.000100		<0.000100
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050		<0.000050		<0.000050
boron, total	7440-42-8	E420	0.010	mg/L	0.020		0.019		0.020
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.000050		<0.000050		<0.000050
calcium, total	7440-70-2	E420	0.050	mg/L	15.0		15.0		15.7
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010		<0.000010		<0.000010
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050		<0.00050		<0.00050
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010		<0.00010		<0.00010
copper, total	7440-50-8	E420	0.00050	mg/L	0.00177		0.00248		0.00136
iron, total	7439-89-6	E420	0.010	mg/L	0.138		0.140		0.154
lead, total	7439-92-1	E420	0.000050	mg/L	0.000736		0.000490		0.000123
lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010		<0.0010		<0.0010
magnesium, total	7439-95-4	E420	0.0050	mg/L	1.60		1.58		1.62
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0263		0.0269		0.0287
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050		<0.000050		<0.000050
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000229		0.000199		0.000180
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050		<0.00050		<0.00050
phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050		<0.050		<0.050
potassium, total	7440-09-7	E420	0.050	mg/L	0.304		0.304		0.312
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00039		0.00039		0.00038

Sub-Matrix: Water			Cl	ient sample ID	SWMP-1m	SWMP-1m Rep	SWMP-5m	SWMP-5m Rep	SWMP-10m
(Matrix: Water)									
			Client samp	ling date / time	15-Feb-2022	15-Feb-2022	15-Feb-2022	15-Feb-2022	15-Feb-2022
Analyte	CAS Number	Method	LOR	Unit	VA22A3162-001	VA22A3162-002	VA22A3162-003	VA22A3162-004	VA22A3162-005
					Result	Result	Result	Result	Result
Total Metals									
selenium, total	7782-49-2	E420	0.000050	mg/L	0.000088		0.000069		0.000074
silicon, total	7440-21-3	E420	0.10	mg/L	3.46		3.44		3.56
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010		<0.000010		<0.000010
sodium, total	7440-23-5	E420	0.050	mg/L	7.35		7.25		7.46
strontium, total	7440-24-6	E420	0.00020	mg/L	0.0458		0.0456		0.0462
sulfur, total	7704-34-9	E420	0.50	mg/L	1.74		1.90		1.74
tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020		<0.00020		<0.00020
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010		<0.000010		<0.000010
thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010		<0.00010		<0.00010
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010		<0.00010		<0.00010
titanium, total	7440-32-6	E420	0.00030	mg/L	0.00181		0.00173		0.00190
tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010		<0.00010		<0.00010
uranium, total	7440-61-1	E420	0.000010	mg/L	<0.000010		<0.000010		<0.000010
vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00063		0.00059		0.00062
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0078		<0.0030		<0.0030
zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020		<0.00020		<0.00020
Plant Pigments									
chlorophyll a	479-61-8	E870	0.010	μg/L	8.86	8.26	7.10		8.15

Please refer to the General Comments section for an explanation of any qualifiers detected.

Sub-Matrix: Water	ent sample ID	SWMP-10m	 	 			
(Matrix: Water)					Rep	 	
			Client sampl	ling date / time	15-Feb-2022	 	
Analyte	CAS Number	Method	LOR	Unit	VA22A3162-006	 	
					Result	 	
Physical Tests							
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	45.6	 	
Anions and Nutrients							
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0092	 	
Total Metals							
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0575	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00019	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0160	 	
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	0.020	 	
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.000050	 	
calcium, total	7440-70-2	E420	0.050	mg/L	15.6	 	
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	 	
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	 	
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	 	
copper, total	7440-50-8	E420	0.00050	mg/L	0.00142	 	
iron, total	7439-89-6	E420	0.010	mg/L	0.150	 	
lead, total	7439-92-1	E420	0.000050	mg/L	0.000133	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	1.62	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0282	 	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000190	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	 	
phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	 	
potassium, total	7440-09-7	E420	0.050	mg/L	0.305	 	
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00042	 	
selenium, total	7782-49-2	E420	0.000050	mg/L	0.000058	 	
silicon, total	7440-21-3	E420	0.10	mg/L	3.51	 	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	 	
sodium, total	7440-23-5	E420	0.050	mg/L	7.52	 	
,	7770-20-0						

Sub-Matrix: Water			Cl	ient sample ID	SWMP-10m	 	
(Matrix: Water)					Rep		
			Client samp	ling date / time	15-Feb-2022	 	
Analyte	CAS Number	Method	LOR	Unit	VA22A3162-006	 	
					Result	 	
Total Metals							
strontium, total	7440-24-6	E420	0.00020	mg/L	0.0455	 	
sulfur, total	7704-34-9	E420	0.50	mg/L	1.75	 	
tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	 	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	 	
thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	 	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	 	
titanium, total	7440-32-6	E420	0.00030	mg/L	0.00185	 	
tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	 	
uranium, total	7440-61-1	E420	0.000010	mg/L	<0.000010	 	
vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00060	 	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	 	
zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: VA22A3162	Page	: 1 of 8
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby, British Columbia Canada V5A 1W9
Telephone	250-390-2525	Telephone	: +1 604 253 4188
Project	: ENOS 1302084	Date Samples Received	: 16-Feb-2022 08:45
PO	:	Issue Date	: 28-Feb-2022 16:42
C-O-C number	: 20-986008		
Sampler	: DS, TR		
Site	:		
Quote number	: VA2022BCCF1000001		
No. of samples received	: 6		
No. of samples analysed	· 6		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: × = 🛛	Holding time excee	edance ; 🔹		Holding Time
Analyte Group	Method	Sampling Date	Extr	raction / Pro	eparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel)									
HDPE SWMP-10m	E378-U	15-Feb-2022					17-Feb-2022	3 days	3 days	~
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel)									
HDPE SWMP-1m Rep	E378-U	15-Feb-2022					17-Feb-2022	3 days	3 days	*
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel)									
HDPE SWMP-5m	E378-U	15-Feb-2022					17-Feb-2022	3 days	3 days	*
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel)									
HDPE SWMP-5m Rep	E378-U	15-Feb-2022					17-Feb-2022	3 days	3 days	*
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) SWMP-10m	E372-U	15-Feb-2022	25-Feb-2022				26-Feb-2022	28 days	12 days	*
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) SWMP-10m Rep	E372-U	15-Feb-2022	25-Feb-2022				26-Feb-2022	28 days	12 days	4
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) SWMP-1m	E372-U	15-Feb-2022	25-Feb-2022				26-Feb-2022	28 days	12 days	*

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; •	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										
SWMP-5m	E372-U	15-Feb-2022	25-Feb-2022				26-Feb-2022	28 days	12 days	✓
Physical Tests : TSS by Gravimetry										
HDPE										
SWMP-5m	E160	15-Feb-2022					17-Feb-2022	7 days	2 days	✓
Physical Tests : TSS by Gravimetry										
HDPE										,
SWMP-5m Rep	E160	15-Feb-2022					17-Feb-2022	7 days	2 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE	F101						40 5 4 0000	0.1		,
SWMP-5m	E121	15-Feb-2022					18-Feb-2022	3 days	4 days	•
Physical Tests : Turbidity by Nephelometry										
HDPE	F104	45 E-h 0000					40 5 4 0000	0.1		,
SWMP-5m Rep	E121	15-Feb-2022					18-Feb-2022	3 days	4 days	•
Plant Pigments : Chlorophyll-a by Fluorometry										
	E970	15 Eab 2022	17 Eab 2022	2 days	2 days		29 Eab 2022	672 hro	11 dovo	
SWMP-TUM	E070	15-Feb-2022	17-Feb-2022	2 days	2 days	ситі	20-Feb-2022	0/21115	TTuays	•
Plant Pigments : Chlorophyll-a by Fluorometry										
	E870	15-Eeb-2022	17-Eeb-2022	2 days	2 days	*	28-Eeb-2022	672 hrs	11 days	1
SWWF-III	2070	10-1 05-2022	17-1 60-2022	2 days	z uays	EHTI	20-1 60-2022	0721113	TT days	•
						LIIIL				
Plant Pigments : Chlorophyll-a by Fluorometry										
SWMP-1m Rep	E870	15-Eeb-2022	17-Eeb-2022	2 days	2 days	*	28-Eeb-2022	672 hrs	11 days	1
Swiwii - III Kep	2070	101 05-2022	11-1 05-2022	2 days	2 days	FHTI	201 05-2022	0721113	TT days	· ·
Diant Diamante e Oblassativille has Elizanametre										
Onaque HDDE										
SWMP-5m	E870	15-Feb-2022	17-Feb-2022	2 days	2 days	×	28-Feb-2022	672 hrs	11 days	1
					,-	EHTL			, 2	

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🔹	= Within	Holding Time
Analyte Group	Method	Sampling Date	Exti	raction / Pr	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
SWMP-10m	E508	15-Feb-2022					18-Feb-2022	28 days	4 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
SWMP-10m Rep	E508	15-Feb-2022					18-Feb-2022	28 days	4 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
SWMP-1m	E508	15-Feb-2022					18-Feb-2022	28 days	4 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
SWMP-5m	E508	15-Feb-2022					18-Feb-2022	28 days	4 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SWMP-10m	E420	15-Feb-2022					25-Feb-2022	180	11 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SWMP-10m Rep	E420	15-Feb-2022					25-Feb-2022	180	11 days	~
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SWMP-1m	E420	15-Feb-2022					25-Feb-2022	180	11 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SWMP-5m	E420	15-Feb-2022					25-Feb-2022	180	11 days	✓
								days		

Legend & Qualifier Definitions

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluation	n: × = QC freque	ncy outside spe	ecification; ✓ = 0	QC frequency wit	hin specification.
Quality Control Sample Type			Co	unt		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	412875	1	4	25.0	5.0	✓
Total Mercury in Water by CVAAS	E508	413909	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	416508	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	418501	1	6	16.6	5.0	✓
TSS by Gravimetry	E160	412189	1	2	50.0	5.0	✓
Turbidity by Nephelometry	E121	413687	1	19	5.2	5.0	✓
Laboratory Control Samples (LCS)							
Chlorophyll-a by Fluorometry	E870	412544	1	7	14.2	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	412875	1	4	25.0	5.0	✓
Total Mercury in Water by CVAAS	E508	413909	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	416508	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	418501	1	6	16.6	5.0	✓
TSS by Gravimetry	E160	412189	1	2	50.0	5.0	✓
Turbidity by Nephelometry	E121	413687	1	19	5.2	5.0	✓
Method Blanks (MB)							
Chlorophyll-a by Fluorometry	E870	412544	1	7	14.2	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	412875	1	4	25.0	5.0	✓
Total Mercury in Water by CVAAS	E508	413909	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	416508	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	418501	1	6	16.6	5.0	✓
TSS by Gravimetry	E160	412189	1	2	50.0	5.0	✓
Turbidity by Nephelometry	E121	413687	1	19	5.2	5.0	✓
Matrix Spikes (MS)							
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	412875	1	4	25.0	5.0	✓
Total Mercury in Water by CVAAS	E508	413909	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	416508	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	418501	1	6	16.6	5.0	✓

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Vancouver -			
	Environmental			
TSS by Gravimetry	E160 Vancouver - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these twees of samples
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Vancouver - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U Vancouver - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508 Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Chlorophyll-a by Fluorometry	E870 Vancouver - Environmental	Water	EPA 445.0 (mod)	Chlorophyll a is determined by solvent extraction followed with analysis by fluorometry using the non-acidification procedure. This method is not subject to interferences from chlorophyll b.
Hardness (Calculated) from Total Ca/Mg	EC100A Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations. Hardness from total Ca/Mg is normally comparable to Dissolved Hardness in non-turbid waters.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.

Page	: 8 of 8
Work Order	: VA22A3162
Client	: The British Columbia Conservation Foundation
Project	: ENOS 1302084

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
	Vancouver -			
	Environmental			
Chlorophyll-a Extraction	EP870	Water	EPA 445.0 (mod)	Chlorophyll-a solvent extraction.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order	VA22A3162	Page	1 of 10
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd Nanaimo BC Canada V9S 5X9	Address	:8081 Lougheed Highway Burnaby, British Columbia Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	+1 604 253 4188
Project	: ENOS 1302084	Date Samples Received	: 16-Feb-2022 08:45
PO	:	Date Analysis Commenced	:17-Feb-2022
C-O-C number	: 20-986008	Issue Date	:28-Feb-2022 16:42
Sampler	: DS, TR		
Site	:		
Quote number	:VA2022BCCF1000001		
No. of samples received	: 6		
No. of samples analysed	: 6		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 10

 Work Order
 : VA22A3162

 Client
 : The British Columbia Conservation Foundation

 Project
 : ENOS 1302084

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC VA22A3162-003	Lot: 412189) SWMP-5m	solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 413687)										
FJ2200446-002	Anonymous	turbidity		E121	0.10	NTU	2.75	2.72	1.10%	15%	
Anions and Nutrient	s (QC Lot: 412875)										
VA22A3162-002	SWMP-1m Rep	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0011	<0.0010	0.0001	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 418501)										
VA21C8035-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0658	0.0631	4.14%	20%	
Total Metals (QC Lo	ot: 413909)										
VA22A3060-001	Anonymous	mercury, total	7439-97-6	E508	0.0050	mg/L	<0.0050 µg/L	<0.0000050	0	Diff <2x LOR	
Total Metals (QC Lo	t: 416508)										
VA22A3154-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0480	0.0477	0.561%	20%	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00012	0.00013	0.00001	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00011	<0.00010	0.00001	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0206	0.0206	0.0122%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	20.5	20.8	1.36%	20%	
		cesium, total	7440-46-2	E420	0.000010	mg/L	0.000018	0.000018	0.00000004	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00050	mg/L	0.00209	0.00208	0.000003	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00050	0.00058	0.00007	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	0.032	0.035	0.002	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	0.614	0.603	1.78%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00174	0.00186	6.90%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00322	0.00317	1.68%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	

Page: 4 of 10Work Order: VA22A3162Client: The British Columbia Conservation FoundationProject: ENOS 1302084

Sub-Matrix: Water	b-Matrix: Water						Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier		
Total Metals (QC Lo	ot: 416508) - continu	ed											
VA22A3154-001	Anonymous	potassium, total	7440-09-7	E420	0.050	mg/L	0.819	0.815	0.548%	20%			
		rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00154	0.00153	0.000008	Diff <2x LOR			
		selenium, total	7782-49-2	E420	0.000050	mg/L	0.000088	0.000075	0.000012	Diff <2x LOR			
		silicon, total	7440-21-3	E420	0.10	mg/L	1.96	1.99	1.14%	20%			
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR			
		sodium, total	7440-23-5	E420	0.050	mg/L	3.27	3.27	0.0454%	20%			
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.136	0.139	2.10%	20%			
		sulfur, total	7704-34-9	E420	0.50	mg/L	15.1	14.6	2.94%	20%			
		tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR			
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR			
		thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR			
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR			
		titanium, total	7440-32-6	E420	0.00030	mg/L	0.00131	0.00123	0.00008	Diff <2x LOR			
		tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR			
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.000026	0.000027	0.000001	Diff <2x LOR			
		vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00071	0.00062	0.00009	Diff <2x LOR			
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR			
		zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR			

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 412189)						
solids, total suspended [TSS]		E160	3	mg/L	<3.0	
Physical Tests (QCLot: 413687)						
turbidity		E121	0.1	NTU	<0.10	
Anions and Nutrients (QCLot: 412875)						
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 418501)						
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
Total Metals (QCLot: 413909)						
mercury, total	7439-97-6	E508	0.000005	mg/L	<0.000050	
Total Metals (QCLot: 416508)						
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cesium, total	7440-46-2	E420	0.00001	mg/L	<0.000010	
chromium, total	7440-47-3	E420	0.0005	mg/L	<0.00050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6	E420	0.01	mg/L	<0.010	
lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
phosphorus, total	7723-14-0	E420	0.05	mg/L	<0.050	
potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
rubidium, total	7440-17-7	E420	0.0002	mg/L	<0.00020	
					a second s	

Page	: 6 of 10
Work Order	: VA22A3162
Client	: The British Columbia Conservation Foundation
Project	: ENOS 1302084

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 416508) - contin	ued					
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
tellurium, total	13494-80-9	E420	0.0002	mg/L	<0.00020	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
thorium, total	7440-29-1	E420	0.0001	mg/L	<0.00010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
tungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	
Plant Pigments (QCLot: 412544)						
chlorophyll a	479-61-8	E870	0.01	µg/L	<0.010	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report								
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 412189)									
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	86.7	85.0	115	
Physical Tests (QCLot: 413687)									
turbidity		E121	0.1	NTU	200 NTU	100	85.0	115	
Anions and Nutrients (QCLot: 412875)									
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.03 mg/L	94.9	80.0	120	
Anions and Nutrients (QCLot: 418501)									
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.05 mg/L	93.8	80.0	120	
Total Metals (QCLot: 413909)									
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	99.6	80.0	120	
Total Metals (QCLot: 416508)									
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	104	80.0	120	
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	110	80.0	120	
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	103	80.0	120	
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	106	80.0	120	
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	104	80.0	120	
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	107	80.0	120	
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	99.4	80.0	120	
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	104	80.0	120	
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	103	80.0	120	
cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	107	80.0	120	
chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	113	80.0	120	
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	101	80.0	120	
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	102	80.0	120	
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	120	80.0	120	
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	107	80.0	120	
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	102	80.0	120	
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	101	80.0	120	
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	104	80.0	120	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	108	80.0	120	
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	104	80.0	120	
phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	99.6	80.0	120	
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	103	80.0	120	

Page: 8 of 10Work Order: VA22A3162Client: The British Columbia Conservation FoundationProject: ENOS 1302084

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Total Metals (QCLot: 416508) - continued											
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	103	80.0	120			
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	101	80.0	120			
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	104	80.0	120			
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	95.3	80.0	120			
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	105	80.0	120			
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	105	80.0	120			
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	102	80.0	120			
tellurium, total	13494-80-9	E420	0.0002	mg/L	0.1 mg/L	107	80.0	120			
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	106	80.0	120			
thorium, total	7440-29-1	E420	0.0001	mg/L	0.1 mg/L	102	80.0	120			
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	103	80.0	120			
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	101	80.0	120			
tungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	100	80.0	120			
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	104	80.0	120			
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	104	80.0	120			
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	101	80.0	120			
zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	106	80.0	120			
Plant Pigments (QCLot: 412544)											
chlorophyll a	479-61-8	E870	0.01	µg/L	5 µg/L	88.3	80.0	120			

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Anions and Nutri	ents (QCLot: 41287	5)										
VA22A3162-003	SWMP-5m	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0301 mg/L	0.03 mg/L	100	70.0	130			
Anions and Nutri	ents (QCLot: 41850 ⁴	1)										
VA22A3162-001	SWMP-1m	phosphorus, total	7723-14-0	E372-U	0.0506 mg/L	0.05 mg/L	101	70.0	130			
Total Metals (QC	Lot: 413909)											
VA22A3066-001	Anonymous	mercury, total	7439-97-6	E508	0.0000999 mg/L	0.0001 mg/L	99.9	70.0	130			
Total Metals (QC	Lot: 416508)											
VA22A3154-002	Anonymous	aluminum, total	7429-90-5	E420	0.197 mg/L	0.2 mg/L	98.5	70.0	130			
		antimony, total	7440-36-0	E420	0.0207 mg/L	0.02 mg/L	104	70.0	130			
		arsenic, total	7440-38-2	E420	0.0201 mg/L	0.02 mg/L	100	70.0	130			
		barium, total	7440-39-3	E420	0.0203 mg/L	0.02 mg/L	102	70.0	130			
		beryllium, total	7440-41-7	E420	0.0400 mg/L	0.04 mg/L	100	70.0	130			
		bismuth, total	7440-69-9	E420	0.0106 mg/L	0.01 mg/L	106	70.0	130			
		boron, total	7440-42-8	E420	0.100 mg/L	0.1 mg/L	100	70.0	130			
		cadmium, total	7440-43-9	E420	0.00420 mg/L	0.004 mg/L	105	70.0	130			
		calcium, total	7440-70-2	E420	4.05 mg/L	4 mg/L	101	70.0	130			
		cesium, total	7440-46-2	E420	0.0104 mg/L	0.01 mg/L	104	70.0	130			
		chromium, total	7440-47-3	E420	0.0396 mg/L	0.04 mg/L	99.1	70.0	130			
		cobalt, total	7440-48-4	E420	0.0201 mg/L	0.02 mg/L	100	70.0	130			
		copper, total	7440-50-8	E420	0.0203 mg/L	0.02 mg/L	102	70.0	130			
		iron, total	7439-89-6	E420	1.95 mg/L	2 mg/L	97.7	70.0	130			
		lead, total	7439-92-1	E420	0.0206 mg/L	0.02 mg/L	103	70.0	130			
		lithium, total	7439-93-2	E420	0.0953 mg/L	0.1 mg/L	95.3	70.0	130			
		magnesium, total	7439-95-4	E420	0.969 mg/L	1 mg/L	96.9	70.0	130			
		manganese, total	7439-96-5	E420	0.0202 mg/L	0.02 mg/L	101	70.0	130			
		molybdenum, total	7439-98-7	E420	0.0207 mg/L	0.02 mg/L	104	70.0	130			
		nickel, total	7440-02-0	E420	0.0408 mg/L	0.04 mg/L	102	70.0	130			
		phosphorus, total	7723-14-0	E420	9.70 mg/L	10 mg/L	97.0	70.0	130			
		potassium, total	7440-09-7	E420	3.95 mg/L	4 mg/L	98.7	70.0	130			
		rubidium, total	7440-17-7	E420	0.0206 mg/L	0.02 mg/L	103	70.0	130			
		selenium, total	7782-49-2	E420	0.0413 mg/L	0.04 mg/L	103	70.0	130			
1	1	silicon, total	7440-21-3	E420	9.12 mg/L	10 mg/L	91.2	70.0	130			

Page: 10 of 10Work Order: VA22A3162Client: The British Columbia Conservation FoundationProject: ENOS 1302084

Sub-Matrix: Water	ub-Matrix: Water						Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	Limits (%)					
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier				
ID														
Total Metals (QCI	_ot: 416508) - continued	t												
VA22A3154-002	Anonymous	silver, total	7440-22-4	E420	0.00404 mg/L	0.004 mg/L	101	70.0	130					
		sodium, total	7440-23-5	E420	1.98 mg/L	2 mg/L	99.1	70.0	130					
		strontium, total	7440-24-6	E420	0.0211 mg/L	0.02 mg/L	106	70.0	130					
		sulfur, total	7704-34-9	E420	19.9 mg/L	20 mg/L	99.5	70.0	130					
		tellurium, total	13494-80-9	E420	0.0410 mg/L	0.04 mg/L	102	70.0	130					
		thallium, total	7440-28-0	E420	0.00395 mg/L	0.004 mg/L	98.7	70.0	130					
		thorium, total	7440-29-1	E420	0.0214 mg/L	0.02 mg/L	107	70.0	130					
		tin, total	7440-31-5	E420	0.0201 mg/L	0.02 mg/L	100	70.0	130					
		titanium, total	7440-32-6	E420	0.0399 mg/L	0.04 mg/L	99.7	70.0	130					
		tungsten, total	7440-33-7	E420	0.0195 mg/L	0.02 mg/L	97.3	70.0	130					
		uranium, total	7440-61-1	E420	0.00407 mg/L	0.004 mg/L	102	70.0	130					
		vanadium, total	7440-62-2	E420	0.100 mg/L	0.1 mg/L	100	70.0	130					
		zinc, total	7440-66-6	E420	0.420 mg/L	0.4 mg/L	105	70.0	130					
		zirconium, total	7440-67-7	E420	0.0416 mg/L	0.04 mg/L	104	70.0	130					

Chain of Custody (COC) / Analytical Request Form

COC Number: 20 - 0.0 C 0.0 S

Page

Canada Toll Free: 1 800 668 9878

Environmental Division

(ALS)	www.alsglobal.com		Canada I oli Free: 1 800 668 9878 Page									e .	١	/anci Woi	OUVE	ir Jer Ro	efere:	/ISIO	n			
Report To	Contact and company name below will appr	ear on the final report	on the final report Recipients						Turnaround Time (TAT) Requested						—		$-\mathbf{V}_{i}$	A2	20	31	16:	C
Company:	Br conservation 7	HOM Format: DE POF DE EXCEL DED (DIGITAL)						Routine [R] if received by 3pm M-F - no surcharges apply							101		-					
Contact:	they Rodento	Merge QC/QCI Reports with COA						4 day (P4) If received by 3pm M-F- 20% rush surcharge minimum								i i						
Phone:	DOD - 390 - 200 PM+ OV Compare Results to Criteria on Report - provide deta					box checked		day (P3] if rece	eived by	3pm M-F -	25% rus	h surcha	irge minim	ามที่			КC,	RĽ #	UA,		
	Company address below will appear on the fina	l report	Select Distributio		🗋 MAIL 🖸	FAX	2 day [P2] if received by 3pm M-F - 50% rush surcharge minimun							1 2 -		1						
Street:	\$105-1885 BOXWOOD	RP	Email 1 or Fax	trodgersi	0 bccf. (0	1m		Same day [E2] if received by 10am M-S - 200% rush surcharge minimum						Jah	三川以茶料金用川							
City/Province:	NANAMO		Email 2	· · · · ·				ay appiy	to rush i	requests	on weekends	, statutor	y holiday	s and non-	ro							
Postal Code:			Email 3					Date ar	nd Time	Requir	ed for all E8	P TATs:			Î	Teh	ephone	: +160	04 253	41 8 8		
Invoice To	Same as Report To	NO		Invoice R	cipients					Fo	r all tests with	rush TAT	s reques	ited, pleas	ومر							
	Copy of Invoice with Report 🙀 YES	NO	Select Invoice Di	istribution: 🕅 🗗] FAX							An	alysis R	lequest	t						
Company:	BCCF		Email 1 or Fax	llimericko	a pech(o	n	181			Indicat	e Filtered (F), Preserv	red (P) c	r Filtered	and Pres	erved (F/	P) below					(s)
Contact:			Email 2				「戸」					P									<u></u>	lote
· · · ·	Project Information		c	Dil and Gas Require	d Fields (client u	sė)	. ₹I						Ł								ы I	ee r
ALS Account # /	Quote # VA 2022 B(LF	1000 001	AFE/Cost Center:		PO#		151		~	Η	103	39										ě.
JOD # ENI	<u>5 13020ry</u>		Major/Minor Code:		Routing Code:		ļõļ	1	Ŧ,	Ĩ		Ê, F	1							오	9 C	ÅRL
PO/AFE:			Requisitioner:				121	ž	*	न्त	1-1-1-1	7 F	1		· ·					z	8 1	Ş.
LSD:	. 1	· · ·	Location:	•	•		Ō	5	ন্দ্র	کی ا	्य	τQ								2	Es 7	Ï
ALS Lab Worl	k Order # (ALS use only):		ALS Contact:	Sineha	Sampler: TK	2105.	IBER	al m	dne	1 / S		ta	404							IPLE:	NDED	ECTE
* ALS Sample # (ALS use only)	Sample Identification (This description will	n and/or Coordinates appear on the report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	ŊŊ	10+	4	1 S	33	412	0rt							SAN	EXTE	SUSF
6 MA	SWMP-IM			15-02-22		Water		V			\checkmark		14		1							
1997 - Car	SWMP-IND MP.			<u> </u>		ÿ					V		V									
	SWMP-5m			<u>``</u>		4				V		∇										_
1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -	SINMO - SIDA MAD.			1		1 .				\mathbf{V}											+	
No. 10	SWMP - IOM			1		<u> </u>			ノ		V				-	-	-					
West All	SWMP - 10 m rep.			1,					7			$\overline{\mathbf{v}}$						1 ·				_
Witese.)												
*		·																	T			
Maria Maria (Al-											E.											
Baria Maria											<u>_//_</u>	h1				<u> </u>						
Star Will make		·								X	<u>Lab</u>	ti-	101	10/M	ny	144	Ya.					
Drinking	g Water (DW) Samples ¹ (client use)	Notes / Specil	ly Limits for result (evaluation by selectin Excel COC only)	g from drop-down	below	Coolir	ig Met	hod:		NONE C		RECE	PT DET	AILS (X	LS US	e only)		Î	inetiati		
Are samples take	n from a Regulated DW System?	dhaada	1-0-100-2	What Filt	and		Suom	ssion	Comm	nents i	aenulled a	m Sam	ple Rei	celpt No	uncation	n: 🏤		YES		D 👬	MI-197-07-X	997 j.
	S [] NO	Chiorophy	1 U-YUW	77101 111	$\frac{\alpha}{}$		Coole	r Cust	ody Se	eals In	tact:		s 📋	N/A S	ampie (Custod	V Seals	Intact:	<u>1983). [</u>		<u> N/A</u>	<u>A</u>
Are samples for h	uman consumption/ use?	Downe City	V NSOO	(will you has	.)		1988 (ST)	2000 B		LOOLE	K TEMPERA	URES				·····································	COOLE	RTEMP	ERATUR	 	<u></u>	
		THEWAR MIL	<u>u u tup</u>		/		1998 Lev		-1998 B.	VASE :	Alternation of the second s	FINAL	SHIP	MENT	PECER		() 860 A 1 &		1000 C	? >>>?	2014 AN	(1986)
Released by:		Line~	Received by:	ANTIAL SAFAIL	Date:		Time:		Rece	ived b	y: Service	[2*		Date:*	1000 P	1 Dra (A	LO USE	· OINY)		lime,		
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING IN		. Santa				N-CUE	NT CO)PY	"We with		<i>誕</i> ())	<u>H</u>	1442	<u>/ 16 j</u>	120	(乙)	<u>\$.</u>	3895 J	<u> 88,</u>	150 AUG 2020 F	RONT

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY YELLOW - CLIENT COPY

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the while - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

CERTIFICATE OF ANALYSIS

Work Order	: VA22A3571	Page	: 1 of 4
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby BC Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	+1 604 253 4188
Project	: ENOS 1302084	Date Samples Received	: 23-Feb-2022 09:00
PO	:	Date Analysis Commenced	: 25-Feb-2022
C-O-C number	: 20-986007	Issue Date	: 09-Mar-2022 15:41
Sampler	: AA/TN		
Site	:		
Quote number	: VA2022BCCF1000001		
No. of samples received	: 4		
No. of samples analysed	: 4		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Dee Lee	Analyst	Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
mg/L	milligrams per litre
NTU	nephelometric turbidity units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Sub-Matrix: Water	Sub-Matrix: Water Client sample						SWMP03-5m	SWMP03-10m	
(Matrix: Water)						rep			
			Client samp	ling date / time	22-Feb-2022 10:57	22-Feb-2022 10:58	22-Feb-2022 11:02	22-Feb-2022 11:06	
Analyte	CAS Number	Method	LOR	Unit	VA22A3571-001	VA22A3571-002	VA22A3571-003	VA22A3571-004	
					Result	Result	Result	Result	
Physical Tests									
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	43.9	44.8	44.1	44.0	
solids, total suspended [TSS]		E160	3.0	mg/L			<3.0		
turbidity		E121	0.10	NTU			1.43		
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0571	0.0551	0.0812	0.0532	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00019	0.00017	0.00016	0.00018	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0162	0.0153	0.0158	0.0153	
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.021	0.021	0.021	0.021	
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
calcium, total	7440-70-2	E420	0.050	mg/L	14.8	15.3	15.0	15.0	
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
copper, total	7440-50-8	E420	0.00050	mg/L	0.00236	0.00187	0.00230	0.00297	
iron, total	7439-89-6	E420	0.010	mg/L	0.145	0.144	0.147	0.152	
lead, total	7439-92-1	E420	0.000050	mg/L	0.00146	0.000816	0.000953	0.000237	
lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	
magnesium, total	7439-95-4	E420	0.0050	mg/L	1.69	1.61	1.61	1.60	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0274	0.0260	0.0260	0.0271	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000191	0.000195	0.000175	0.000190	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	
potassium, total	7440-09-7	E420	0.050	mg/L	0.337	0.297	0.303	0.294	
rubidium, total	7440-17-7	E420	0.00020	- mg/L	0.00048	0.00044	0.00042	0.00042	
selenium, total	7782-49-2	E420	0.000050	mg/L	0.000094	0.000088	0.000072	0.000079	
silicon, total	7440-21-3	E420	0.10	mg/L	3.71	3.69	3.71	3.69	
I			1			I	I	I	

Jb-Matrix: Water Client sample ID				SWMP03-1m	SWMP03-1m	SWMP03-5m	SWMP03-10m		
Matrix: Water)						rep			
Client sampling date / time			22-Feb-2022 10:57	22-Feb-2022 10:58	22-Feb-2022 11:02	22-Feb-2022 11:06			
Analyte CAS N	mber Me	thod	LOR	Unit	VA22A3571-001	VA22A3571-002	VA22A3571-003	VA22A3571-004	
					Result	Result	Result	Result	
Total Metals									
silver, total 744	-22-4 E4	420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, total 744	-23-5 E4	120	0.050	mg/L	7.99	7.56	7.57	7.52	
strontium, total 744	-24-6 E4	120	0.00020	mg/L	0.0462	0.0450	0.0461	0.0445	
sulfur, total 770	-34-9 E4	420	0.50	mg/L	1.63	1.66	1.69	1.73	
tellurium, total 1349	-80-9 E4	420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	
thallium, total 744	-28-0 E4	420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
thorium, total 744	-29-1 E4	420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
tin, total 744	-31-5 E4	120	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, total 744	-32-6 E4	120	0.00030	mg/L	0.00193	0.00178	0.00338	0.00177	
tungsten, total 744	-33-7 E4	120	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
uranium, total 744	-61-1 E4	120	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
vanadium, total 744	-62-2 E4	120	0.00050	mg/L	0.00050	<0.00050	0.00054	0.00051	
zinc, total 744	-66-6 E4	420	0.0030	mg/L	0.0056	0.0054	0.0086	<0.0030	
zirconium, total 744	-67-7 E4	420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: VA22A3571	Page	: 1 of 6
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby, British Columbia Canada V5A 1W9
Telephone	250-390-2525	Telephone	: +1 604 253 4188
Project	: ENOS 1302084	Date Samples Received	: 23-Feb-2022 09:00
PO	:	Issue Date	: 09-Mar-2022 15:40
C-O-C number	: 20-986007		
Sampler	: AA/TN		
Site	:		
Quote number	: VA2022BCCF1000001		
No. of samples received	:4		
No. of samples analysed	· 4		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🔹	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation Hold		g Times	Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry										
HDPE										
SWMP03-5m	E160	22-Feb-2022					28-Feb-2022	7 days	7 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
SWMP03-5m	E121	22-Feb-2022					25-Feb-2022	3 days	3 days	~
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)	E508	22 Eab 2022					26 Eab 2022	28 days	4 days	1
SWWF03-1011	L300	22-1 60-2022					20-1 60-2022	20 uays	4 uays	•
Total Matala - Tatal Mayaumi in Water bu CVAAC										
Glass vial - total (lab preserved)										
SWMP03-1m	E508	22-Feb-2022					26-Feb-2022	28 davs	4 davs	1
									,	
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
SWMP03-1m rep	E508	22-Feb-2022					26-Feb-2022	28 days	4 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
SWMP03-5m	E508	22-Feb-2022					26-Feb-2022	28 days	4 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										,
SWMP03-10m	E420	22-Feb-2022					04-Mar-2022	180	10 days	✓
								days		

Matrix: Water					Ev	aluation: × =	Holding time excee	edance ; •	🗸 = Within	Holding Time
Analyte Group	Method	Sampling Date	Extraction / Preparation			Analysis				
Container / Client Sample ID(s)			Preparation	Holding Times Eval		Eval Analysis Date		Holding Times		
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved) SWMP03-1m	E420	22-Feb-2022					04-Mar-2022	180 days	10 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved) SWMP03-1m rep	E420	22-Feb-2022					04-Mar-2022	180 days	10 days	√
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved) SWMP03-5m	E420	22-Feb-2022					04-Mar-2022	180 days	10 days	✓

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water	Evaluation: \star = QC frequency outside specification; \checkmark = QC frequency within specification.								
Quality Control Sample Type			Co	unt	Frequency (%)				
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)									
Total Mercury in Water by CVAAS	E508	418912	1	20	5.0	5.0	✓		
Total Metals in Water by CRC ICPMS	E420	421505	1	20	5.0	5.0	✓		
TSS by Gravimetry	E160	420144	1	15	6.6	5.0	✓		
Turbidity by Nephelometry	E121	418174	1	17	5.8	5.0	✓		
Laboratory Control Samples (LCS)									
Total Mercury in Water by CVAAS	E508	418912	1	20	5.0	5.0	✓		
Total Metals in Water by CRC ICPMS	E420	421505	1	20	5.0	5.0	✓		
TSS by Gravimetry	E160	420144	1	15	6.6	5.0	✓		
Turbidity by Nephelometry	E121	418174	1	17	5.8	5.0	✓		
Method Blanks (MB)									
Total Mercury in Water by CVAAS	E508	418912	1	20	5.0	5.0	✓		
Total Metals in Water by CRC ICPMS	E420	421505	1	20	5.0	5.0	✓		
TSS by Gravimetry	E160	420144	1	15	6.6	5.0	✓		
Turbidity by Nephelometry	E121	418174	1	17	5.8	5.0	✓		
Matrix Spikes (MS)									
Total Mercury in Water by CVAAS	E508	418912	1	20	5.0	5.0	1		
Total Metals in Water by CRC ICPMS	E420	421505	1	20	5.0	5.0	1		

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Vancouver -			
	Environmental			
TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Vancouver -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Environmental			brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
Total Metals in Water by CRC ICPMS	E420	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
	Vancouver -			
	Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
	Vancouver -			
	Environmental			
Hardness (Calculated) from Total Ca/Mg	EC100A	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	Vancouver -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Environmental			calculated from dissolved Calcium and Magnesium concentrations, because it is a
				property of water due to dissolved divalent cations. Hardness from total Ca/Mg is
				normally comparable to Dissolved Hardness in non-turbid waters.

QUALITY CONTROL REPORT

Work Order	VA22A3571	Page :	1 of 10
Client	: The British Columbia Conservation Foundation	Laboratory	:Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd Nanaimo BC Canada V9S 5X9	Address	8081 Lougheed Highway Burnaby, British Columbia Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	+1 604 253 4188
Project	: ENOS 1302084	Date Samples Received	:23-Feb-2022 09:00
PO	:	Date Analysis Commenced	:25-Feb-2022
C-O-C number	: 20-986007	Issue Date	:09-Mar-2022 15:40
Sampler	: AA/TN		
Site	:		
Quote number	: VA2022BCCF1000001		
No. of samples received	: 4		
No. of samples analysed	: 4		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Dee Lee	Analyst	Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page: 3 of 10Work Order: VA22A3571Client: The British Columbia Conservation FoundationProject: ENOS 1302084

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 418174)										
KS2200536-002	Anonymous	turbidity		E121	0.10	NTU	0.68	0.66	0.03	Diff <2x LOR	
Physical Tests (QC	Lot: 420144)										
FJ2200497-002	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0	0	Diff <2x LOR	
Total Metals (QC Lo	t: 418912)										
VA22A3567-013	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.0000050	0	Diff <2x LOR	
Total Metals (QC Lo	t: 421505)										
VA22A3565-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.103	0.102	1.27%	20%	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00350	0.00352	0.434%	20%	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00881	0.00889	0.885%	20%	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0142	0.0146	3.23%	20%	
		beryllium, total	7440-41-7	E420	0.000100	mg/L	0.00239	0.00242	1.31%	20%	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	0.00333	0.00332	0.441%	20%	
		boron, total	7440-42-8	E420	0.010	mg/L	0.019	0.020	0.0006	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.00320	0.00321	0.388%	20%	
		calcium, total	7440-70-2	E420	0.050	mg/L	20.8	21.5	3.42%	20%	
		cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00050	mg/L	0.00746	0.00752	0.774%	20%	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	0.00783	0.00786	0.314%	20%	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00864	0.00868	0.480%	20%	
		iron, total	7439-89-6	E420	0.010	mg/L	0.018	0.019	0.0004	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	0.00305	0.00308	0.715%	20%	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0108	0.0109	0.883%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	5.56	5.49	1.29%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00893	0.00889	0.463%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00432	0.00434	0.470%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00525	0.00562	6.77%	20%	
		phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	1.03	1.02	0.405%	20%	
		rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00074	0.00079	0.00005	Diff <2x LOR	
		selenium, total	7782-49-2	E420	0.000050	mg/L	0.00491	0.00501	2.08%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	0.42	0.39	0.03	Diff <2x LOR	
				I	I 1				L. C.	r I.	

Page: 4 of 10Work Order: VA22A3571Client: The British Columbia Conservation FoundationProject: ENOS 1302084

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	ot: 421505) - continued										
VA22A3565-001	Anonymous	silver, total	7440-22-4	E420	0.000010	mg/L	0.00165	0.00166	0.592%	20%	
		sodium, total	7440-23-5	E420	0.050	mg/L	9.18	9.14	0.502%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.117	0.120	2.61%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	6.00	6.15	2.47%	20%	
		tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.00417	0.00429	2.89%	20%	
		thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	0.00292	0.00294	0.594%	20%	
		titanium, total	7440-32-6	E420	0.00030	mg/L	0.00322	0.00329	1.87%	20%	
		tungsten, total	7440-33-7	E420	0.00010	mg/L	0.00401	0.00406	1.18%	20%	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00518	0.00522	0.808%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0062	0.0061	0.0001	Diff <2x LOR	
		zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water					
Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 418174)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 420144)					
solids, total suspended [TSS]	E160	3	mg/L	<3.0	
Total Metals (QCLot: 418912)					
mercury, total	7439-97-6 E508	0.000005	mg/L	<0.000050	
Total Metals (QCLot: 421505)					
aluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8 E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
cesium, total	7440-46-2 E420	0.00001	mg/L	<0.000010	
chromium, total	7440-47-3 E420	0.0005	mg/L	<0.00050	
cobalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6 E420	0.01	mg/L	<0.010	
lead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
phosphorus, total	7723-14-0 E420	0.05	mg/L	<0.050	
potassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
rubidium, total	7440-17-7 E420	0.0002	mg/L	<0.00020	
selenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E420	0.1	mg/L	<0.10	
silver, total	7440-22-4 E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5 E420	0.05	mg/L	<0.050	
			1 contract of the second se	1	I

Page	: 6 of 10
Work Order	: VA22A3571
Client	: The British Columbia Conservation Foundation
Project	: ENOS 1302084

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 421505) - continue	ed					
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
tellurium, total	13494-80-9	E420	0.0002	mg/L	<0.00020	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
thorium, total	7440-29-1	E420	0.0001	mg/L	<0.00010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
tungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 418174)									
turbidity		E121	0.1	NTU	200 NTU	100	85.0	115	
Physical Tests (QCLot: 420144)									
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	85.5	85.0	115	
Total Metals (QCLot: 418912)									
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	102	80.0	120	
Total Metals (QCLot: 421505)									
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	113	80.0	120	
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	112	80.0	120	
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	108	80.0	120	
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	109	80.0	120	
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	116	80.0	120	
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	103	80.0	120	
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	112	80.0	120	
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	108	80.0	120	
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	111	80.0	120	
cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	110	80.0	120	
chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	107	80.0	120	
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	106	80.0	120	
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	107	80.0	120	
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	108	80.0	120	
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	108	80.0	120	
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	112	80.0	120	
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	107	80.0	120	
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	107	80.0	120	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	110	80.0	120	
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	106	80.0	120	
phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	105	80.0	120	
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	110	80.0	120	
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	116	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	102	80.0	120	
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	108	80.0	120	
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	103	80.0	120	
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	111	80.0	120	

Page: 8 of 10Work Order: VA22A3571Client: The British Columbia Conservation FoundationProject: ENOS 1302084

Sub-Matrix: Water	-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Total Metals (QCLot: 421505) - continued												
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	112	80.0	120				
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	99.6	80.0	120				
tellurium, total	13494-80-9	E420	0.0002	mg/L	0.1 mg/L	119	80.0	120				
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	108	80.0	120				
thorium, total	7440-29-1	E420	0.0001	mg/L	0.1 mg/L	99.7	80.0	120				
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	107	80.0	120				
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	102	80.0	120				
tungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	104	80.0	120				
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	105	80.0	120				
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	108	80.0	120				
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	111	80.0	120				
zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	105	80.0	120				

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water		Matrix Spike (MS) Report								
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Total Metals (QC	CLot: 418912)									
VA22A3567-017	Anonymous	mercury, total	7439-97-6	E508	0.0000846 mg/L	0.0001 mg/L	84.6	70.0	130	
Total Metals (QC	CLot: 421505)									
VA22A3565-002	Anonymous	aluminum, total	7429-90-5	E420	0.205 mg/L	0.2 mg/L	103	70.0	130	
		antimony, total	7440-36-0	E420	0.0211 mg/L	0.02 mg/L	106	70.0	130	
		arsenic, total	7440-38-2	E420	0.0209 mg/L	0.02 mg/L	104	70.0	130	
	barium, total	7440-39-3	E420	0.0196 mg/L	0.02 mg/L	97.8	70.0	130		
		beryllium, total	7440-41-7	E420	0.0438 mg/L	0.04 mg/L	110	70.0	130	
		bismuth, total	7440-69-9	E420	0.00973 mg/L	0.01 mg/L	97.3	70.0	130	
		boron, total	7440-42-8	E420	0.110 mg/L	0.1 mg/L	110	70.0	130	
		cadmium, total	7440-43-9	E420	ND mg/L	0.004 mg/L	ND	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cesium, total	7440-46-2	E420	0.0107 mg/L	0.01 mg/L	107	70.0	130	
		chromium, total	7440-47-3	E420	0.0406 mg/L	0.04 mg/L	101	70.0	130	
		cobalt, total	7440-48-4	E420	0.0199 mg/L	0.02 mg/L	99.6	70.0	130	
		copper, total	7440-50-8	E420	0.0204 mg/L	0.02 mg/L	102	70.0	130	
		iron, total	7439-89-6	E420	2.00 mg/L	2 mg/L	99.8	70.0	130	
		lead, total	7439-92-1	E420	0.0205 mg/L	0.02 mg/L	102	70.0	130	
		lithium, total	7439-93-2	E420	0.105 mg/L	0.1 mg/L	105	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.0200 mg/L	0.02 mg/L	100	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0222 mg/L	0.02 mg/L	111	70.0	130	
		nickel, total	7440-02-0	E420	0.0402 mg/L	0.04 mg/L	100	70.0	130	
		phosphorus, total	7723-14-0	E420	9.95 mg/L	10 mg/L	99.5	70.0	130	
		potassium, total	7440-09-7	E420	3.79 mg/L	4 mg/L	94.6	70.0	130	
		rubidium, total	7440-17-7	E420	0.0209 mg/L	0.02 mg/L	104	70.0	130	
		selenium, total	7782-49-2	E420	0.0411 mg/L	0.04 mg/L	103	70.0	130	
		silicon, total	7440-21-3	E420	9.79 mg/L	10 mg/L	97.9	70.0	130	
		silver, total	7440-22-4	E420	0.00409 mg/L	0.004 mg/L	102	70.0	130	
		sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
	1	sulfur, total	7704-34-9	E420	20.1 mg/L	20 mg/L	100	70.0	130	

Page: 10 of 10Work Order: VA22A3571Client: The British Columbia Conservation FoundationProject: ENOS 1302084

Sub-Matrix: Water	ub-Matrix: Water					Matrix Spike (MS) Report					
					Spike		Recovery (%)	Recovery Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Total Metals (QC	Lot: 421505) - continue	d									
VA22A3565-002	Anonymous	tellurium, total	13494-80-9	E420	0.0461 mg/L	0.04 mg/L	115	70.0	130		
		thallium, total	7440-28-0	E420	ND mg/L	0.004 mg/L	ND	70.0	130		
		thorium, total	7440-29-1	E420	0.0201 mg/L	0.02 mg/L	100	70.0	130		
		tin, total	7440-31-5	E420	0.0210 mg/L	0.02 mg/L	105	70.0	130		
		titanium, total	7440-32-6	E420	0.0402 mg/L	0.04 mg/L	100	70.0	130		
		tungsten, total	7440-33-7	E420	0.0202 mg/L	0.02 mg/L	101	70.0	130		
		uranium, total	7440-61-1	E420	ND mg/L	0.004 mg/L	ND	70.0	130		
		vanadium, total	7440-62-2	E420	0.103 mg/L	0.1 mg/L	103	70.0	130		
		zinc, total	7440-66-6	E420	0.434 mg/L	0.4 mg/L	108	70.0	130		
		zirconium, total	7440-67-7	E420	0.0448 mg/L	0.04 mg/L	112	70.0	130		

Chain of Custody (COC) / Analytical Request Form

COC Number: 20 - 986007

Page) of (

Canada Toll Free: 1 800 668 9878

													(F	Envir	onm	ental	Divi	ision	1
Report To	Contact and company n	ame below will appear on the final report		Reports / R	leciplents	·		Turnaround Time (TAT) Requested						Vancouver						
Company:	BC CONCENC	ation troundutic	Select Report F	format: X PDF	💢 excel 🛛 🖻	D (DIGITAL)	Routine [R] if received by 3pm M-F - no surcharges apply						Í		Wo	rk O	rder Re	eferen	10e	4
Contact:	Thea Rodger	<u> </u>	Merge QC/QC	Merge QC/QCI Reports with COA					4 day [P4] if received by 3pm M-F - 20% rush surcharge minin							Ά	<u>22</u> F	135	57	1
Phone:	220 30 - 22	25 ext. 104	Compare Res	ults to Criteria on Report - p	rovide details below if	box checked	3 day [P3] it received by 3pm M-F - 25% rush surcharge mining 7 day [P2] if received by 3pm M-F - 50% rush surcharge mining								•		_			
	Company address below will a	appear on the final report	Select Distributi			FAX	☐ 2 day	2 day [P2] in received by 3pm M-F - 30% rush surcharge minimu								111 📖	LFRA	_NO		11
Street:	#105-1885 8	oxwood Rd.	Email 1 or Fax	Trodgers (e bactico	m	□ Same	day [E2] if re	ceived by 10	am M-S -	200% ru	sh surcha	rge. Addit			III 6	6.8.	280i		dl 👘
City/Province:	Nanaimo	· · · · · · · · · · · · · · · · · · ·	Email 2				may ap	pply to rush r	equests on w	eekends, :	statutory I	nolidays a	nd non-ro				<u> </u>	FILE		41
Postal Code:	BC VAS SX	9	Email 3				Dat	te and Time	Required fo	r all E&P	TATs:			1		W 11	1413	SUY.		
Invoice To	Same as Report To			Invoice Re	ecipients		L		For all te	sts with n	ush TATs	requested	, please co	i		W 1	, .	11 .	\$ 201	111
	Copy of Invoice with Report	YES INO	Select Invoice D	Distribution: 🕅 🗗	IAIL 💭 MAIL 🗖	FAX						Analy	sis Red	1			+ 1 604	253 416	30	
Company:			Email 1 or Fax	llimench	Chichi	"on	8		Indicate Filt	ərəd (F), I	Preserved	t (P) or F	itered and	1	l etebi	10110				
Contact:			Email 2				ΞL							<u> </u>	┉┈┝╴			-	ΠĔΠ	ğ
	Project Infor	mation		Oil and Gas Required	d Fields (client us	e)	Ā			sl i									l 🖫 '	69
ALS Account # /	Quote # VA 2022	BCGF1000001	AFE/Cost Center:		PO#		5 3	হা প্ল	14	-						1		13		ŝ
Job#: 30	2084 ENOS		Major/Minor Code:		Routing Code:		١ <u>ۃ</u>	ই ই		1					.	1	1	Ιĭ	AG	L R
PO / AFE:			Requisitioner:					23	14	뀌								Z	l Ю	2
LSD: ·		··· ··································	Location:	1			Ī	ୁ ବି	11-4	5								۵L	ST	
ALS I ah Worl	k Order # (Al Suse only):	A Morez	AI S Contact	Sach	Sampler: Ar	11	🖁 ~	굵목		5								μü	E	
3, 3, b,	二、 1、 推 输 5	115011		orkha	HI-	TIN	<u> </u> @ -	h 14		ž								Ē		μ μ
ALS Sample #	Sampl	le Identification and/or Coordinate	s ' .	Date	Time	Sample Type	≦ ⊦	의치	- NA	2						1		Ā	Ē	IS I
(ALS use only)	(This	description will appear on the report)	(dd-mmm-yy)	(hh:mm)		1 <u>z</u> 17							4			·	10	╧	1.0
	SWMP03-1	im		22-02-22	10:5+	WATER	a _	¥.						_				<u> </u>	<u> </u>	
	SWMP03-	Im rep		22-02-22	10:58	1	2	\mathbf{Y}												
N & A	SWMP 03-	Sm		22-02-22	11:02	-1	3	\checkmark	_/\~	1								<u> </u>		
N N N	SWMP 03.	- Iom		22-02-77	11:06	•.	2	\checkmark								_				
									Л											
										1										
N	•	···· ··· · · · · · · · · · · · · · · ·							71									T		
												-						1.		
																		T		
1									1											
8 8 8 V	······	·	······································								-							1		
8 3 × 1																				
Drinking	Drinking Water (DW) Samples ¹ (client use)							1996 - 1												
	(Excel COC only)					Cooling	Method:	. 💽 . NO	<u>ve</u> Z		C ICE	PACKS		OZEN 🚑	NC.	<u>] COOLI</u>	NG INITI	ATED	<u>ak</u>	
Are samples taker	re samples taxen from a regulated DW System?					Submiss	sion Comm	ents iden	lified on	Sampl	e Rece	pt Notifi	cation:	80 ^{- 9} 80.	۲ <u>, 🗆 </u>	<u>8 </u>	<u></u>	1000 100 100	<u> () (</u>	
			· · · · · · ·					Custody Se	als Intact		YES	<u>[]</u> N/	A 🚬 Sar	nple Cu	stody Se	eals in	tact:		<u>e " [</u>	N/A &
Are samples for h	uman consumption/ use?						A CONTRACT	Section 10 AL	AULER IE	WITCHA (10 Bes	in R.		PINAL CO			2		1374, 2748 1989
		EE (aliant usa)	STATE TRANSPORT						Si i S Siste and	1990 - 1 1990 -	FINAL	SLIDA		CEPTI/		<u> </u>		×. (%)		2004 2004
Released by: -		ac (client use)	ne: Received by	Received by					Time: Received by											
A	1 <u>4/TN</u>	32-02-22 B	00		R. A. K.		1 Mar ***	1. 19 1 .	\$ <u></u>	<u>_</u>	J(No R	<u>3</u> †	eb	20	<u>22</u>	- K	<u> </u>	n

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY YELLOW - CLIENT COPY

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

CERTIFICATE OF ANALYSIS

Work Order	: VA22A4191	Page	: 1 of 4
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby BC Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	+1 604 253 4188
Project	: 1302084 ENOS	Date Samples Received	: 01-Mar-2022 08:40
PO	:	Date Analysis Commenced	: 03-Mar-2022
C-O-C number	: 20-986006	Issue Date	: 10-Mar-2022 17:10
Sampler	: PL/TR		
Site	:		
Quote number	: VA2022BCCF1000001		
No. of samples received	: 4		
No. of samples analysed	: 4		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Harpreet Chawla	Team Leader - Inorganics	Metals, Calgary, Alberta
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Sara Niroomand		Inorganics, Calgary, Alberta
Sara Niroomand		Metals, Calgary, Alberta

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
mg/L	milligrams per litre
NTU	nephelometric turbidity units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Water Client sample ID						SWMP-03-5m	SWMP-03-5m	SWMP-03-10m	
(Matrix: Water)							rep		
			Client samp	ling date / time	28-Feb-2022 10:30	28-Feb-2022 10:35	28-Feb-2022 10:37	28-Feb-2022 10:41	
Analyte	CAS Number	Method	LOR	Unit	VA22A4191-001	VA22A4191-002	VA22A4191-003	VA22A4191-004	
					Result	Result	Result	Result	
Physical Tests									
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	43.8	44.1	43.5	43.3	
solids, total suspended [TSS]		E160	3.0	mg/L		<3.0			
turbidity		E121	0.10	NTU		1.38			
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0518	0.0506	0.0513	0.0490	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00023	0.00022	0.00020	0.00020	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0171	0.0169	0.0168	0.0160	
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.019	0.019	0.019	0.018	
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
calcium, total	7440-70-2	E420	0.050	mg/L	14.7	14.8	14.6	14.6	
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
copper, total	7440-50-8	E420	0.00050	mg/L	0.00160	0.00149	0.00139	0.00128	
iron, total	7439-89-6	E420	0.010	mg/L	0.156	0.152	0.156	0.152	
lead, total	7439-92-1	E420	0.000050	mg/L	0.000437	0.000245	0.000898	0.000093	
lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	
magnesium, total	7439-95-4	E420	0.0050	mg/L	1.73	1.73	1.71	1.67	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0267	0.0269	0.0266	0.0264	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000177	0.000185	0.000182	0.000172	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	
potassium, total	7440-09-7	E420	0.050	mg/L	0.309	0.321	0.308	0.298	
rubidium, total	7440-17-7	E420	0.00020	- mg/L	0.00041	0.00042	0.00040	0.00039	
selenium, total	7782-49-2	E420	0.000050	mg/L	0.000098	0.000088	0.000062	0.000063	
silicon, total	7440-21-3	E420	0.10	mg/L	3.72	3.74	3.70	3.58	
I	1		1	i - I		1	1	1	1

Analytical Results

(Matrix: Water)Internal SectionInternal SectionIntern	Sub-Matrix: Water			Cl	ient sample ID	SWMP-03-1m	SWMP-03-5m	SWMP-03-5m	SWMP-03-10m	
Lieit sampleLieit sample28-Feb-2022 (1:3028-Feb-2022 (1:3528-Feb-2022 (1:3728-Feb-2022 (1:37)18-Feb-2022 (1:37)28-Feb-	(Matrix: Water)							rep		
Analyte CAS Number Method LOR Unit VA22A4191-001 VA22A4191-002 VA22A4191-000 Result				Client samp	ling date / time	28-Feb-2022 10:30	28-Feb-2022 10:35	28-Feb-2022 10:37	28-Feb-2022 10:41	
ResultResu	Analyte	CAS Number	Method	LOR	Unit	VA22A4191-001	VA22A4191-002	VA22A4191-003	VA22A4191-004	
Total Metals silver, total 7440-22-4 E420 0.00010 rmg/L <0.00010						Result	Result	Result	Result	
silver, total 7440-22-4 E420 0.00010 rmg/L <0.00010	Total Metals									
sodium, total 7440-23-5 E420 0.050 mg/L 8.32 8.18 8.08 8.01	silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
strontium, total 7440-246 E420 0.00020 mg/L 0.0460 0.0468 0.0476 0.0455 sulfur, total 7704-349 E420 0.50 mg/L 1.92 1.82 1.85 1.72 tellurium, total 13494-809 E420 0.00020 mg/L <0.00020	sodium, total	7440-23-5	E420	0.050	mg/L	8.32	8.18	8.08	8.01	
sulfur, total7704-34.9E4200.50mg/L1.921.821.851.72tellurium, total13494-80E4200.00020mg/L<0.00020	strontium, total	7440-24-6	E420	0.00020	mg/L	0.0460	0.0468	0.0476	0.0455	
tellurium, total 13494-80-9 E420 0.0020 mg/L <0.0020	sulfur, total	7704-34-9	E420	0.50	mg/L	1.92	1.82	1.85	1.72	
thallium, total 7440-28-0 E420 0.00010 rmg/L <0.00010	tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	
thorium, total 7440-29-1 E420 0.00010 rmg/L <0.00010	thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
tin, total 7440-31-5 E420 0.00010 mg/L <0.00010	thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, total 7440-32-6 E420 0.00030 mg/L 0.00173 0.00155 0.00137 0.00170 tungsten, total 7440-33-7 E420 0.00010 mg/L <0.00010	tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
tungsten, total 7440-33-7 E420 0.00010 mg/L <0.00010	titanium, total	7440-32-6	E420	0.00030	mg/L	0.00173	0.00155	0.00137	0.00170	
uranium, total 7440-61-1 E420 0.000010 mg/L 0.000018 <0.000010	tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
	uranium, total	7440-61-1	E420	0.000010	mg/L	0.000018	<0.000010	<0.000010	<0.000010	
vanadium, total 7440-62-2 E420 0.00050 mg/L 0.00092 0.00082 0.00079 0.00075	vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00092	0.00082	0.00079	0.00075	
zinc, total 7440-66-6 E420 0.0030 mg/L <0.0030 0.0044 <0.0030 <0.0030	zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	0.0044	<0.0030	<0.0030	
zirconium, total 7440-67-7 E420 0.00020 mg/L <0.00020 <0.00020 <0.00020 <0.00020	zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: VA22A4191	Page	: 1 of 6
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby, British Columbia Canada V5A 1W9
Telephone	250-390-2525	Telephone	: +1 604 253 4188
Project	: 1302084 ENOS	Date Samples Received	: 01-Mar-2022 08:40
PO	:	Issue Date	: 10-Mar-2022 17:10
C-O-C number	: 20-986006		
Sampler	: PL/TR		
Site	:		
Quote number	: VA2022BCCF1000001		
No. of samples received	:4		
No. of samples analysed	· 4		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E١	aluation: × =	Holding time exce	edance ; 🔹	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	ding Times Eval		Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry										
HDPE										
SWMP-03-5m	E160	28-Feb-2022					04-Mar-2022	7 days	5 days	1
Physical Tests : Turbidity by Nephelometry										
HDPE										
SWMP-03-5m	E121	28-Feb-2022					03-Mar-2022	3 days	3 days	~
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)	EE09	28 Eab 2022					07 Mar 2022	29 days	7 dovo	1
SWMF-03-1011	L300	20-1 60-2022					07-1011-2022	20 uays	7 uays	•
Tatal Matala - Tatal Manaum in Watar by CVAAC										
Glass vial - total (lab preserved)										
SWMP-03-1m	E508	28-Feb-2022					07-Mar-2022	28 davs	7 davs	1
									,	
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
SWMP-03-5m	E508	28-Feb-2022					07-Mar-2022	28 days	7 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
SWMP-03-5m rep	E508	28-Feb-2022					07-Mar-2022	28 days	7 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										,
SWMP-03-10m	E420	28-Feb-2022					03-Mar-2022	180	3 days	✓
								days		

Matrix: Water					Ev	aluation: × =	Holding time excee	edance ; •	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	Extraction / Preparation				Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	, Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved) SWMP-03-1m	E420	28-Feb-2022					03-Mar-2022	180 days	3 days	4
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved) SWMP-03-5m	E420	28-Feb-2022					03-Mar-2022	180 days	3 days	√
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved) SWMP-03-5m rep	E420	28-Feb-2022					03-Mar-2022	180 days	3 days	√

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water	Evaluation: \times = QC frequency outside specification; \checkmark = QC frequency within specification.								
Quality Control Sample Type			Count						
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)									
Total Mercury in Water by CVAAS	E508	425609	1	20	5.0	5.0	✓		
Total Metals in Water by CRC ICPMS	E420	422755	1	16	6.2	5.0	✓		
TSS by Gravimetry	E160	424537	1	20	5.0	5.0	✓		
Turbidity by Nephelometry	E121	422326	1	19	5.2	5.0	✓		
Laboratory Control Samples (LCS)									
Total Mercury in Water by CVAAS	E508	425609	1	20	5.0	5.0	✓		
Total Metals in Water by CRC ICPMS	E420	422755	1	16	6.2	5.0	✓		
TSS by Gravimetry	E160	424537	1	20	5.0	5.0	✓		
Turbidity by Nephelometry	E121	422326	1	19	5.2	5.0	\checkmark		
Method Blanks (MB)									
Total Mercury in Water by CVAAS	E508	425609	1	20	5.0	5.0	1		
Total Metals in Water by CRC ICPMS	E420	422755	1	16	6.2	5.0	✓		
TSS by Gravimetry	E160	424537	1	20	5.0	5.0	✓		
Turbidity by Nephelometry	E121	422326	1	19	5.2	5.0	✓		
Matrix Spikes (MS)									
Total Mercury in Water by CVAAS	E508	425609	1	20	5.0	5.0	1		
Total Metals in Water by CRC ICPMS	E420	422755	1	16	6.2	5.0	 ✓ 		

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Turbidity by Nephelometry	E121 Vancouver -	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Environmental			
TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Vancouver -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Environmental			brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
Total Metals in Water by CRC ICPMS	E420 Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
				Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508 Calgary - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Hardness (Calculated) from Total Ca/Mg	EC100A Calgary - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations. Hardness from total Ca/Mg is normally cancellated the dissolved because in normality caters.

QUALITY CONTROL REPORT

Work Order	VA22A4191	Page	: 1 of 10
Client	: The British Columbia Conservation Foundation	Laboratory	:Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd Nanaimo BC Canada V9S 5X9	Address	∺8081 Lougheed Highway Burnaby, British Columbia Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	: +1 604 253 4188
Project	: 1302084 ENOS	Date Samples Received	:01-Mar-2022 08:40
PO	:	Date Analysis Commenced	:03-Mar-2022
C-O-C number	: 20-986006	Issue Date	: 10-Mar-2022 17:10
Sampler	: PL/TR		
Site	:		
Quote number	:VA2022BCCF1000001		
No. of samples received	: 4		
No. of samples analysed	: 4		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Harpreet Chawla	Team Leader - Inorganics	Metals, Calgary, Alberta
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Sara Niroomand		Inorganics, Calgary, Alberta
Sara Niroomand		Metals, Calgary, Alberta

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page: 3 of 10Work Order: VA22A4191Client: The British Columbia Conservation FoundationProject: 1302084 ENOS

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water	b-Matrix: Water				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 422326)										
VA22A4191-002	SWMP-03-5m	turbidity		E121	0.10	NTU	1.38	1.34	3.38%	15%	
Physical Tests (QC	Lot: 424537)										
KS2200649-001	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	9.5	8.9	0.6	Diff <2x LOR	
Total Metals (QC Lo	ot: 422755)										
FJ2200533-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0456	0.0419	8.36%	20%	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00121	0.00123	1.31%	20%	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00098	0.00101	0.00004	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.132	0.131	0.945%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.145	0.145	0.153%	20%	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.000127	0.000122	4.13%	20%	
		calcium, total	7440-70-2	E420	0.050	mg/L	230	228	0.520%	20%	
		cesium, total	7440-46-2	E420	0.000010	mg/L	0.000027	0.000027	0.00000001	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	0.00075	0.00076	0.000001	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00109	0.00103	0.00006	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	0.170	0.169	0.313%	20%	
		lead, total	7439-92-1	E420	0.000050	mg/L	0.000090	0.000081	0.000009	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.266	0.267	0.258%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	93.1	91.9	1.34%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.152	0.150	1.32%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00707	0.00728	2.91%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.0172	0.0168	2.49%	20%	
		phosphorus, total	7723-14-0	E420	0.050	mg/L	0.508	0.458	0.050	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	12.4	12.1	1.99%	20%	
		rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00916	0.00918	0.142%	20%	
		selenium, total	7782-49-2	E420	0.000050	mg/L	0.0290	0.0284	2.24%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	6.93	6.96	0.394%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	183	185	0.866%	20%	
				I	1						

Page: 4 of 10Work Order: VA22A4191Client: The British Columbia Conservation FoundationProject: 1302084 ENOS

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo											
FJ2200533-001	Anonymous	strontium, total	7440-24-6	E420	0.00020	mg/L	0.379	0.378	0.404%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	199	203	1.79%	20%	
		tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000013	0.000013	0.00000003	Diff <2x LOR	
		thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	0.00189	0.00160	0.00029	Diff <2x LOR	
		tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.0135	0.0136	1.36%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00111	0.00108	0.00004	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0091	0.0076	0.0015	Diff <2x LOR	
		zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 425609)										
FJ2200569-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 422326)						
turbidity	E	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 424537)						
solids, total suspended [TSS]	E	E160	3	mg/L	<3.0	
Total Metals (QCLot: 422755)						
aluminum, total	7429-90-5 E	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E	E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3 E	E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7 E	E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9 E	E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8 E	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E	E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2 E	E420	0.05	mg/L	<0.050	
cesium, total	7440-46-2 E	E420	0.00001	mg/L	<0.000010	
chromium, total	7440-47-3 E	E420	0.0005	mg/L	<0.00050	
cobalt, total	7440-48-4 E	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E	E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6 E	E420	0.01	mg/L	<0.010	
lead, total	7439-92-1 E	E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2 E	E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4 E	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5 E	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7 E	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E	E420	0.0005	mg/L	<0.00050	
phosphorus, total	7723-14-0 E	E420	0.05	mg/L	<0.050	
potassium, total	7440-09-7 E	E420	0.05	mg/L	<0.050	
rubidium, total	7440-17-7 E	E420	0.0002	mg/L	<0.00020	
selenium, total	7782-49-2 E	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4 E	E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5 E	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6 E	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9 E	E420	0.5	mg/L	<0.50	
A CONTRACT OF	1		1	I. Contraction of the second se	1	I

Page	: 6 of 10
Work Order	: VA22A4191
Client	: The British Columbia Conservation Foundation
Project	: 1302084 ENOS

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 422755) - continu	ed					
tellurium, total	13494-80-9	E420	0.0002	mg/L	<0.00020	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
thorium, total	7440-29-1	E420	0.0001	mg/L	<0.00010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
tungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	
Total Metals (QCLot: 425609)						
mercury, total	7439-97-6	E508	0.000005	mg/L	<0.000050	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Physical Tests (QCLot: 422326)												
turbidity		E121	0.1	NTU	200 NTU	97.5	85.0	115				
Physical Tests (QCLot: 424537)												
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	92.8	85.0	115				
Total Metals (QCLot: 422755)												
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	93.3	80.0	120				
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	84.8	80.0	120				
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	92.7	80.0	120				
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	94.6	80.0	120				
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	82.0	80.0	120				
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	84.5	80.0	120				
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	100	80.0	120				
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	93.3	80.0	120				
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	81.4	80.0	120				
cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	83.2	80.0	120				
chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	90.6	80.0	120				
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	92.6	80.0	120				
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	90.6	80.0	120				
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	101	80.0	120				
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	83.6	80.0	120				
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	84.7	80.0	120				
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	94.2	80.0	120				
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	93.7	80.0	120				
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	86.1	80.0	120				
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	92.0	80.0	120				
phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	96.7	70.0	130				
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	93.0	80.0	120				
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	93.6	80.0	120				
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	85.8	80.0	120				
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	87.3	60.0	140				
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	83.0	80.0	120				
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	94.4	80.0	120				
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	88.4	80.0	120				
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	86.9	80.0	120				

Page	: 8 of 10
Work Order	: VA22A4191
Client	: The British Columbia Conservation Foundation
Project	: 1302084 ENOS

Sub-Matrix: Water	p-Matrix: Water				Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Total Metals (QCLot: 422755) - continued										
tellurium, total	13494-80-9	E420	0.0002	mg/L	0.1 mg/L	97.6	80.0	120		
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	82.7	80.0	120		
thorium, total	7440-29-1	E420	0.0001	mg/L	0.1 mg/L	80.5	80.0	120		
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	84.1	80.0	120		
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	94.4	80.0	120		
tungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	82.0	80.0	120		
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	83.1	80.0	120		
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	94.4	80.0	120		
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	92.4	80.0	120		
zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	82.9	80.0	120		
Total Metals (QCLot: 425609)										
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	99.9	80.0	120		

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water				Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Total Metals (QC	CLot: 422755)									
FJ2200537-001	Anonymous	aluminum, total	7429-90-5	E420	2.04 mg/L	2 mg/L	102	70.0	130	
		antimony, total	7440-36-0	E420	0.191 mg/L	0.2 mg/L	95.7	70.0	130	
		arsenic, total	7440-38-2	E420	0.201 mg/L	0.2 mg/L	100	70.0	130	
		barium, total	7440-39-3	E420	0.206 mg/L	0.2 mg/L	103	70.0	130	
		beryllium, total	7440-41-7	E420	0.402 mg/L	0.4 mg/L	100	70.0	130	
		bismuth, total	7440-69-9	E420	0.0993 mg/L	0.1 mg/L	99.3	70.0	130	
		boron, total	7440-42-8	E420	1.01 mg/L	1 mg/L	101	70.0	130	
		cadmium, total	7440-43-9	E420	0.0413 mg/L	0.04 mg/L	103	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	40 mg/L	ND	70.0	130	
		cesium, total	7440-46-2	E420	0.1000 mg/L	0.1 mg/L	100.0	70.0	130	
		chromium, total	7440-47-3	E420	0.411 mg/L	0.4 mg/L	103	70.0	130	
		cobalt, total	7440-48-4	E420	0.205 mg/L	0.2 mg/L	102	70.0	130	
		copper, total	7440-50-8	E420	0.206 mg/L	0.2 mg/L	103	70.0	130	
		iron, total	7439-89-6	E420	20.6 mg/L	20 mg/L	103	70.0	130	
		lead, total	7439-92-1	E420	0.196 mg/L	0.2 mg/L	98.3	70.0	130	
		lithium, total	7439-93-2	E420	1.01 mg/L	1 mg/L	101	70.0	130	
		magnesium, total	7439-95-4	E420	9.71 mg/L	10 mg/L	97.1	70.0	130	
		manganese, total	7439-96-5	E420	0.209 mg/L	0.2 mg/L	104	70.0	130	
		molybdenum, total	7439-98-7	E420	0.187 mg/L	0.2 mg/L	93.5	70.0	130	
		nickel, total	7440-02-0	E420	0.414 mg/L	0.4 mg/L	104	70.0	130	
		phosphorus, total	7723-14-0	E420	104 mg/L	100 mg/L	104	70.0	130	
		potassium, total	7440-09-7	E420	40.4 mg/L	40 mg/L	101	70.0	130	
		rubidium, total	7440-17-7	E420	0.214 mg/L	0.2 mg/L	107	70.0	130	
		selenium, total	7782-49-2	E420	0.415 mg/L	0.4 mg/L	104	70.0	130	
		silicon, total	7440-21-3	E420	91.5 mg/L	100 mg/L	91.5	70.0	130	
		silver, total	7440-22-4	E420	0.0389 mg/L	0.04 mg/L	97.2	70.0	130	
		sodium, total	7440-23-5	E420	21.0 mg/L	20 mg/L	105	70.0	130	
		strontium, total	7440-24-6	E420	0.206 mg/L	0.2 mg/L	103	70.0	130	
		sulfur, total	7704-34-9	E420	208 mg/L	200 mg/L	104	70.0	130	
		tellurium, total	13494-80-9	E420	0.380 mg/L	0.4 mg/L	94.9	70.0	130	
		thallium, total	7440-28-0	E420	0.0379 mg/L	0.04 mg/L	94.7	70.0	130	
1		thorium, total	7440-29-1	E420	0.214 mg/L	0.2 mg/L	107	70.0	130	

Page: 10 of 10Work Order: VA22A4191Client: The British Columbia Conservation FoundationProject: 1302084 ENOS

Sub-Matrix: Water	ub-Matrix: Water				Matrix Spike (MS) Report					
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Total Metals (QC	Lot: 422755) - continue	d								
FJ2200537-001	Anonymous	tin, total	7440-31-5	E420	0.190 mg/L	0.2 mg/L	94.8	70.0	130	
		titanium, total	7440-32-6	E420	0.384 mg/L	0.4 mg/L	96.0	70.0	130	
		tungsten, total	7440-33-7	E420	0.173 mg/L	0.2 mg/L	86.7	70.0	130	
		uranium, total	7440-61-1	E420	0.0400 mg/L	0.04 mg/L	100.0	70.0	130	
		vanadium, total	7440-62-2	E420	1.04 mg/L	1 mg/L	104	70.0	130	
		zinc, total	7440-66-6	E420	3.99 mg/L	4 mg/L	99.8	70.0	130	
		zirconium, total	7440-67-7	E420	0.386 mg/L	0.4 mg/L	96.6	70.0	130	
Total Metals (QCLot: 425609)										
FJ2200569-002	Anonymous	mercury, total	7439-97-6	E508	0.0000929 mg/L	0.0001 mg/L	92.9	70.0	130	

Chain of Custody (COC) / Analytical Request Form

COC Number: 20 - 986006

۱

Canada Toll Free: 1 800 668 9878

of Page

Report To	Contact and company name below will appe	ear on the final report	Reports / Recipients		Turnaround Time (TAT) Requested				Ē	Environmental Division										
Company:	BC Conservation Foundation Select F		Select Report Fo	elect Report Format: : X PDF X EXCEL D EDD (DIGITAL)			Rou	Routine [R] if received by 3pm M-F - no surcharges apply				\	Vancouver							
Contact:	Thea Rodien		Merge QC/QCI Reports with COA 📋 YES 📋 NO 📋 N/A			4 day (P4) if received by 3pm M-F - 20% rush surcharge minimu					Work Order Reference									
Phone:	220-300-0220 ext	104.	Compare Resu	Its to Criteria on Report - p	rovide details below if	box checked	30	ay [P3] if	received b	y3pm M-F v2nm M-F	- 25% rus	Surcharg	je min im Po minim		VA22A4191					
	Company address below will appear on the fina	il report	Select Distributio	In: EMAIL		FAX		ay (r≄j ⊓ ay (E] if ne	sceived by	ayopun men 3om M-F∙	- 100% rusi	surcharo	e minim	U						
Street:	#105-1885 BOXWOR	od Rd.	Email 1 or Fax	trodeci	<u>sebc</u>	cf.com	Sam	ie day [E2]	if received	by 10am	M-S - 200%	rush surch	arge, Ad	8						
City/Province:	Nanaimo BC		Email 2	<u> </u>			L may	apply to n	sh request	s on weeke	nds, statutor	y holidays	and non-	n 						
Postal Code:	V455x9-		Email 3				С)ate and T	ime Requ	ired for all	E&P TATS:			1			[33]			
Invoice To	Same as Report To 🙀 YES [NO NO		Invoice Re	cipients		For all tests with rush TATs requested, please							h the II	75					
	Copy of Invoice with Report YES	D NO	Select Invoice Di	stribution: 🏌 EM	AIL 🗋 MAIL 📋	FAX	Analysis Ré				é									
Company:			Email 1 or Fax	Mimerich	Cobict.	(om	181		Indica	ate Filtered	(F), Preserv	ed (P) or I	Filtered	ц Т	elephor	10:+1f	604 253 4	166		
Contact:			Email 2				핗		_					7				· · · · · · · · · · · · · · · · · · ·		
	Project Information		C	il and Gas Required	l Fields (client us	ie)	Į₹I		, L					-					ğ	ee
ALS Account #/	Quote # VA2022 BCG	1000001	AFE/Cost Center:		PO#			শ্বা:	žÞ									17	2	s)
Jop #: 130	2024 ENOS		Major/Minor Code:		Routing Code:		<u></u>	39,	4									Ξ	AG	ARI
PO/AFE:	-		Requisitioner:					2 4	5	[년]								Z	ß	ΓĀ.
LSD:			Location:				ō	2	ž	Z								6	S I	HO
ALS Lab Work	Order # (ALS use only):	AHIGI	ALS Contact:	sneha	Sampler: A	ITR.	BER	tal	2,0	pi	5					. 		PLE	VDED	ECTE
ALS Sample #	Sample Identification	n and/or Coordinates		Date	Time	Sample Turne	131	13 7	F.	1,3	3			· .		1		ĮΣ	Ē	SP
(ALS use only)	(This description will a	appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	Ī	1										Ś	Ш	SU
	SWMP-03-IM			28-02-22	1030	Water	2	\mathbf{V}								· ·]				•
* the	Sidmp-03-5m			- 1	1035	٤,	3	$\overline{\mathbf{v}}$		V					· .	i T				
	SIN MP-03-5m	NO.		· .	1037	4	a	V			-									
1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	SWMP - 03 - 10 6	<u></u>		٤,	1041		2													<u> </u>
		<u>n</u>			<u>-'* (1</u>															$ \neg $
	·····		· ·		·															\square
															-					
		•.		<u> </u>											1					
1						· · ·			+-			┝──┼╴				\square				
	· · · · · · · · · · · · · · · · · · ·		<u> </u>	· · · · · · · · · · · · · · · · · · ·					+							i t		<u>†</u>		
				<u> </u>												\vdash		1		
NS. 1778									-							i t				
Drinking	Water (DW) Samples ¹ (client use)	Notes / Specif	y Limits for result (evaluation by selecting excel COC only)	g from drop-down l	below	Coolin	n Methor		NONE			T DET		S use	only)	ALINON É	C INITI		iter in se
Are samples taken from a Regulated DW System?			Cille Ind	1								te Me								
I YES IND NO FIELD TH			nten 1	itten 15 done,									N/A							
Are samples for hu	man consumption/ use?						INITIAL COOLER TEMPERATURES °C					\$								
CIYES CINO							Sec.		34. 386			and see a		4	Mari	7	i a		N Geografi	
	SHIPMENT RELEASE (client use)			INITIAL SHIPMENT	RECEPTION (AI	S use only)	and the second	()	n naine.	WWW M	FINA	SHIPN	IENT F	RECEPT	ION (AL	.S use c	nly) 🐄	2. 1911.	i dove B	
Released by:	M Date: The	20 Time:	Received by:	()	Date:	6 - 790	Time:	Re	ceived	by:	TC		Date:	1.m		cin?	20.0	Time	6	777
REFER TO BACK P	AGE FOR ALS LOCATIONS AND SAMPLING IN		Regelition (B. Sal	W/HI	TE - LABORATORY		USSON: N - CLIFI						- California	「茶し話」	wr z	<u>ZVa</u>		1.0	100	WYV PO FRONT

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY, By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

CERTIFICATE OF ANALYSIS

Work Order	: VA22B0694	Page	: 1 of 2
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby BC Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	+1 604 253 4188
Project	: 1303015 ENOS	Date Samples Received	: 17-May-2022 08:45
PO	:	Date Analysis Commenced	18-May-2022
C-O-C number	: 20-986005	Issue Date	24-May-2022 15:18
Sampler	: TR/KS		-
Site	:		
Quote number	: VA2022BCCF1000001		
No. of samples received	: 4		
No. of samples analysed	: 4		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
µg/L	micrograms per litre
mg/L	milligrams per litre

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Water			Cl	ient sample ID	SWMP03-1m	SWMP03-5m	SWMP03-10m	SWMP03-10m	
(Matrix: Water)							#1	#2	
			Client samp	ling date / time	16-May-2022 11:45	16-May-2022 11:55	16-May-2022 12:10	16-May-2022 12:15	
Analyte	CAS Number	Method	LOR	Unit	VA22B0694-001	VA22B0694-002	VA22B0694-003	VA22B0694-004	
					Result	Result	Result	Result	
Anions and Nutrients									
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0150	0.0134	0.0168	0.0178	
phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0117	0.0136	0.0167	0.0182	
Plant Pigments									
chlorophyll a	479-61-8	E870	0.010	µg/L	8.18	15.2	11.6	11.6	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: VA22B0694	Page	: 1 of 6
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby, British Columbia Canada V5A 1W9
Telephone	250-390-2525	Telephone	+1 604 253 4188
Project	: 1303015 ENOS	Date Samples Received	: 17-May-2022 08:45
PO	:	Issue Date	: 24-May-2022 15:18
C-O-C number	: 20-986005		
Sampler	: TR/KS		
Site			
Quote number	: VA2022BCCF1000001		
No. of samples received	:4		
No. of samples analysed	· 4		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- No Duplicate outliers occur.
- <u>No</u> Laboratory Control Sample (LCS) outliers occur
- <u>No</u> Matrix Spike outliers occur.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• <u>No</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Eva	aluation: × =	Holding time exce	edance ; 🔹		Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass dissolved (sulfuric acid) SWMP03-10m #1	E375-T	16-May-2022	18-May-2022				20-May-2022	28 days	4 days	√
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass dissolved (sulfuric acid) SWMP03-10m #2	E375-T	16-May-2022	18-May-2022				20-May-2022	28 days	4 days	✓
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass dissolved (sulfuric acid) SWMP03-1m	E375-T	16-May-2022	18-May-2022				20-May-2022	28 days	4 days	~
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass dissolved (sulfuric acid) SWMP03-5m	E375-T	16-May-2022	18-May-2022				20-May-2022	28 days	4 days	√
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (lab preserved) SWMP03-10m #1	E372-U	16-May-2022	18-May-2022	3 days	2 days	*	20-May-2022	28 days	2 days	~
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (lab preserved) SWMP03-10m #2	E372-U	16-May-2022	18-May-2022	3 days	2 days	1	20-May-2022	28 days	2 days	1
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (lab preserved) SWMP03-1m	E372-U	16-May-2022	18-May-2022	3 days	2 days	~	20-May-2022	28 days	2 days	~

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🗸	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Eval Analysis Date		Holding Times	
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (lab preserved) SWMP03-5m	E372-U	16-May-2022	18-May-2022	3 days	2 days	~	20-May-2022	28 days	2 days	~
Plant Pigments : Chlorophyll-a by Fluorometry										
Opaque HDPE SWMP03-10m #1	E870	16-May-2022	18-May-2022	2 days	2 days	1	18-May-2022	672 hrs	0 days	1
Plant Pigments : Chlorophyll-a by Fluorometry										
Opaque HDPE SWMP03-10m #2	E870	16-May-2022	18-May-2022	2 days	2 days	✓	18-May-2022	672 hrs	0 days	*
Plant Pigments : Chlorophyll-a by Fluorometry										
Opaque HDPE SWMP03-1m	E870	16-May-2022	18-May-2022	2 days	2 days	✓	18-May-2022	672 hrs	0 days	✓
Plant Pigments : Chlorophyll-a by Fluorometry				1				1		
Opaque HDPE SWMP03-5m	E870	16-May-2022	18-May-2022	2 days	2 days	1	18-May-2022	672 hrs	0 days	✓

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

atrix: Water Evaluation: × = QC frequency outside specification; ✓ = QC frequency within specification								
Quality Control Sample Type			Co	unt	Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)								
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	492188	1	15	6.6	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	492187	1	10	10.0	5.0	✓	
Laboratory Control Samples (LCS)								
Chlorophyll-a by Fluorometry	E870	491664	1	6	16.6	5.0	✓	
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	492188	1	15	6.6	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	492187	1	10	10.0	5.0	✓	
Method Blanks (MB)								
Chlorophyll-a by Fluorometry	E870	491664	1	6	16.6	5.0	✓	
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	492188	1	15	6.6	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	492187	1	10	10.0	5.0	✓	
Matrix Spikes (MS)								
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	492188	1	15	6.6	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	492187	1	10	10.0	5.0	✓	

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
	Vancouver -			
	Environmental			
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	Water	APHA 4500-P E (mod).	Total Dissolved Phosphorus is determined colourimetrically using a discrete analyzer after filtration through a 0.45 micron filter followed by heated persulfate digestion of the
	Vancouver -			sample.
	Environmental			
Chlorophyll-a by Fluorometry	E870	Water	EPA 445.0 (mod)	Chlorophyll a is determined by solvent extraction followed with analysis by fluorometry using the non-acidification procedure. This method is not subject to interferences from
	Vancouver -			chlorophyll b.
	Environmental			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
	Environmental			
Digestion for Dissolved Phosphorus in water	EP375	Water	APHA 4500-P E (mod).	Samples are filtered through a 0.45 micron membrane filter and then heated with a persulfate digestion reagent.
	Vancouver -			
	Environmental			
Chlorophyll-a Extraction	EP870	Water	EPA 445.0 (mod)	Chlorophyll-a solvent extraction.
	Vancouver -			
		1		

QUALITY CONTROL REPORT

Work Order	VA22B0694	Page :	1 of 4
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	∶8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby, British Columbia Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	: +1 604 253 4188
Project	: 1303015 ENOS	Date Samples Received	: 17-May-2022 08:45
PO	:	Date Analysis Commenced	:18-May-2022
C-O-C number	: 20-986005	Issue Date	24-May-2022 15:17
Sampler	: TR/KS		
Site	;		
Quote number	:VA2022BCCF1000001		
No. of samples received	: 4		
No. of samples analysed	:4		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Lindsay Gung	Supervisor - Water Chemistry	Vancouver Inorganics, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrients (QC Lot: 492187)											
VA22B0694-001	SWMP03-1m	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0150	0.0132	0.0018	Diff <2x LOR	
Anions and Nutrients (QC Lot: 492188)											
VA22B0641-001	Anonymous	phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0052	0.0048	0.0005	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water
Analyte

Analyte	CAS Number N	Method	LOR	Unit	Result	Qualifier			
Anions and Nutrients (QCLot: 492187)									
phosphorus, total	7723-14-0 E	E372-U	0.002	mg/L	<0.0020				
Anions and Nutrients (QCLot: 492188)									
phosphorus, total dissolved	7723-14-0 E	E375-T	0.002	mg/L	<0.0020				
Plant Pigments (QCLot: 491664)									
chlorophyll a	479-61-8 E	E870	0.01	μg/L	<0.010				

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water	ub-Matrix: Water				Laboratory Control Sample (LCS) Report				
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 492187)									
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.05 mg/L	97.8	80.0	120	
Anions and Nutrients (QCLot: 492188)									
phosphorus, total dissolved	7723-14-0	E375-T	0.002	mg/L	0.05 mg/L	103	80.0	120	
Plant Pigments (QCLot: 491664)									
chlorophyll a	479-61-8	E870	0.01	μg/L	5 µg/L	96.6	80.0	120	

Page: 4 of 4Work Order: VA22B0694Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water	b-Matrix: Water				Matrix Spike (MS) Report						
				Spike		Recovery (%)	Recovery Limits (%)				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Anions and Nutrients (QCLot: 492187)											
VA22B0694-002	SWMP03-5m	phosphorus, total	7723-14-0	E372-U	0.0498 mg/L	0.05 mg/L	99.7	70.0	130		
Anions and Nutrients (QCLot: 492188)											
VA22B0658-001	Anonymous	phosphorus, total dissolved	7723-14-0	E375-T	0.0514 mg/L	0.05 mg/L	103	70.0	130		

Chain of Custody (COC) / Analytical Request Form

COC Number: 20 - 986005

ALS www.alsglobal.com

×.

Canada Toll Free: 1 800 668 9878

Contact and company name below will appear on the final report **Reports / Recipients** Turnaround Time (TAT) Requested Report To **Environmental Division** BC conservation Foundation Select Report Format: δ§ POF EDD (DIGITAL) K Routine [R] if received by 3pm M-F - no surcharges apply Company: Ъ EXCE. Vancouver 🗱 YES 🗖 Contact: Thea Rodgers Merge QC/QCI Reports with COA NO 🖸 N/A Ċ 4 day [P4] if received by 3pm M-F - 20% rush surcharge minir Work Order Reference 3 day [P3] if received by 3pm M-F - 25% rush surcharge minis Compare Results to Criteria on Report - provide details below if box checked Phone: 2555-076-2525 ext. 104 VA22B0694 2 day [P2] if received by 3pm M-F - 50% rush surcharge mini-🔏 EMAIL MAIL FAX Company address below will appear on the final report Select Distribution: 1 day [E] if received by 3pm M-F - 100% rush surcharge minin \$105-1885 Boxwood Rd Same day [E2] if received by 10am M-S - 200% rush surcharge. A brt.com Street: trodaers 0 Email 1 or Fax may apply to rush requests on weekends, statutory holidays and nor Email 2 City/Province NANAMO ୍ୟ କ୍ର Email 3 Date and Time Required for all E&P TATs: Postal Code VATATO For all tests with rush TATs requested, pleas Invoice To Invoice Recipients Same as Report To 💆 YES 🔲 NO 🙀 YES 🔲 NO Select Invoice Distribution: 🕅 EMAIL 🔲 MAIL 🗖 FAX Analysis F Copy of Invoice with Report Email 1 or Fax two lapers a broch rom CONTAINERS Indicate Filtered (F), Preserved (P) or Filtered Company Email 2 llimentar @ bart com Telephone: +1 604 253 4188 Contact: **Project Information** Oil and Gas Required Fields (client use) Dissolved phalphona EXTENDED STORAGE RE SUSPECTED HAZARD (se SAMPLES ON HOLD ALS Account #/ Quote # 1A7077, BCCF 100 000 AFE/Cost Center: PO# Total (physhonaus hlorophyll-a 100# 1303015 FNOC Maior/Minor Code Routing Code: PO/AFE: Requisitioner: ĥ LSD: Location: NUMBER ALS Lab Work Order # (ALS use only); ALS Contact: Sneha TRIKS Sampler: 100 a. 1.26 ALS Sample # Sample Identification and/or Coordinates Date Time 0 Sample Type (ALS use only) ے (dd-mmm-yy) (This description will appear on the report) (hh:mm) V V 1:45 Z \checkmark Water S. 1 WMPD3-Im -FNS $\sqrt{}$ Ŵ ġ, S(M)MOB - Sm3 V \checkmark 11 4 Sumpor -10m12:00 11 \mathbf{v} . 4 1 SUMDAZ V (Om V 11 1.11 Ria $\mathcal{L}^{(r)}$ 68 . 200 1 A. 纝 22 1 AL PAR S. 徽 SAMPLE RECEIPT DETAILS (ALS use only) Notes / Specify Limits for result evaluation by selecting from drop-down below Drinking Water (DW) Samples¹ (client use) (Excel COC only) Cooling Method: Are samples taken from a Regulated DW System? Please filter chlorophyll-a Submission Comments identified on Sample Receipt Notification: 👷 🍏 🗍 YES 🖋 📋 NO 🐲 10 SII TYES NO Cooler Custody Seals Intact YES N/A Sample Custody Seals intact: M 📋 YES 📋 N/A . FINAL COOLER TEMPERATURES °C Are samples for human consumption/ use? INITIAL COOLER TEMPERATURES °C 40 hours. 19.08 18886 ň TY 聯 1 12 YES NO INITIAL SHIPMENT RECEPTION (ALS use only) FINAL SHIPMENT RECEPTION (ALS use only) SHIPMENT RELEASE (client use) 183 353 100 1 Time: 🎡 Released by: Received by: Date: Received by Date Time: Date 1-11 mar 15 197 1 كالمعاد 100

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY YELLOW - CLIENT COPY

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

CERTIFICATE OF ANALYSIS

Work Order	: VA22B7778	Page	: 1 of 5
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby BC Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	+1 604 253 4188
Project	: 1303015 ENOS	Date Samples Received	: 03-Aug-2022 09:05
PO	:	Date Analysis Commenced	: 03-Aug-2022
C-O-C number	: 20-982083	Issue Date	: 16-Aug-2022 14:30
Sampler	: HT/AA		-
Site			
Quote number	: VA2022BCCF1000001		
No. of samples received	: 6		
No. of samples analysed	: 6		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Brieanna Allen	Production/Validation Manager	Microbiology, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Inorganics, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Woochan Song	Lab Analyst	Metals, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
mg/L	milligrams per litre
MPN/100mL	most probable number per 100 mL
NTU	nephelometric turbidity units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Water			C	lient sample ID	SWMP-03-1M	SWMP-03-5M	SWMP-03-5M	SWMP-03-10M	SWMP-04-1M
(Matrix: Water)							DUP		
			Client samp	oling date / time	02-Aug-2022 10:37	02-Aug-2022 10:40	02-Aug-2022 10:40	02-Aug-2022 10:43	02-Aug-2022 10:53
Analyte	CAS Number	Method	LOR	Unit	VA22B7778-001	VA22B7778-002	VA22B7778-003	VA22B7778-004	VA22B7778-005
					Result	Result	Result	Result	Result
Physical Tests									
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	45.8	43.0	44.6	46.5	
solids, total suspended [TSS]		E160	3.0	mg/L		<3.0			
turbidity		E121	0.10	NTU		1.37			
Microbiological Tests									
coliforms, total		E010	1	MPN/100mL	261				260
coliforms, Escherichia coli [E. coli]		E010	1	MPN/100mL	<1				<1
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0265	0.0174	0.0184	0.0302	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00023	0.00018	0.00018	0.00030	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0178	0.0169	0.0164	0.0226	
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.022	0.020	0.021	0.020	
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.000050	0.000069	<0.000050	<0.000050	
calcium, total	7440-70-2	E420	0.050	mg/L	15.5	14.6	15.2	15.9	
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	0.00014	
copper, total	7440-50-8	E420	0.00050	mg/L	0.00110	0.00102	0.00109	0.00079	
iron, total	7439-89-6	E420	0.010	mg/L	0.042	0.061	0.066	2.06	
lead, total	7439-92-1	E420	0.000050	mg/L	0.000206	0.000242	0.000254	0.000124	
lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	
magnesium, total	7439-95-4	E420	0.0050	mg/L	1.72	1.60	1.62	1.66	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0173	0.0242	0.0267	0.207	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000208	0.000188	0.000191	0.000153	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	
potassium, total	7440-09-7	E420	0.050	mg/L	0.350	0.321	0.329	0.373	

Analytical Results

Sub-Matrix: Water			Cl	ient sample ID	SWMP-03-1M	SWMP-03-5M	SWMP-03-5M	SWMP-03-10M	SWMP-04-1M
(Matrix: Water)							DUP		
			Client samp	ling date / time	02-Aug-2022 10:37	02-Aug-2022 10:40	02-Aug-2022 10:40	02-Aug-2022 10:43	02-Aug-2022 10:53
Analyte	CAS Number	Method	LOR	Unit	VA22B7778-001	VA22B7778-002	VA22B7778-003	VA22B7778-004	VA22B7778-005
					Result	Result	Result	Result	Result
Total Metals									
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00051	0.00039	0.00044	0.00054	
selenium, total	7782-49-2	E420	0.000050	mg/L	0.000068	0.000076	0.000076	0.000084	
silicon, total	7440-21-3	E420	0.10	mg/L	2.76	3.12	3.12	3.92	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, total	7440-23-5	E420	0.050	mg/L	7.56	7.17	7.15	7.48	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.0488	0.0448	0.0452	0.0491	
sulfur, total	7704-34-9	E420	0.50	mg/L	1.42	1.51	1.60	0.98	
tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	0.00033	0.00050	0.00055	0.00094	
tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
uranium, total	7440-61-1	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00058	<0.00050	<0.00050	0.00085	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0053	0.0035	0.0048	<0.0030	
zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

Sub-Matrix: Water			С	lient sample ID	SWMP-06-1M	 	
(Matrix: Water)							
			Client sam	oling date / time	02-Aug-2022 11:15	 	
Analyte	CAS Number	Method	LOR	Unit	VA22B7778-006	 	
					Result	 	
Microbiological Tests							
coliforms, total		E010	1	MPN/100mL	2420	 	
coliforms, Escherichia coli [E. coli]		E010	1	MPN/100mL	1	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: VA22B7778	Page	: 1 of 6
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby, British Columbia Canada V5A 1W9
Telephone	250-390-2525	Telephone	: +1 604 253 4188
Project	: 1303015 ENOS	Date Samples Received	: 03-Aug-2022 09:05
PO	: 	Issue Date	: 16-Aug-2022 14:30
C-O-C number	: 20-982083		5
Sampler	: HT/AA		
Site			
Quote number	: VA2022BCCF1000001		
No. of samples received	: 6		
No. of samples analysed	: 6		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- No Duplicate outliers occur.
- <u>No</u> Laboratory Control Sample (LCS) outliers occur
- <u>No</u> Matrix Spike outliers occur.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Eva	aluation: 🗶 =	Holding time exce	edance ; 🔹	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Microbiological Tests : Total Coliforms and E. coli (Enzyme Substrate)										
Sterile HDPE (Sodium thiosulphate)										
SWMP-06-1M	E010	02-Aug-2022					03-Aug-2022	30 hrs	24 hrs	1
Microbiological Tests : Total Coliforms and E. coli (Enzyme Substrate)										
Sterile HDPE (Sodium thiosulphate)										
SWMP-03-1M	E010	02-Aug-2022					03-Aug-2022	30 hrs	25 hrs	✓
Microbiological Tests : Total Coliforms and E. coli (Enzyme Substrate)										
Sterile HDPE (Sodium thiosulphate)										
SWMP-04-1M	E010	02-Aug-2022					03-Aug-2022	30 hrs	25 hrs	~
Physical Tests : TSS by Gravimetry										
HDPE										
SWMP-03-5M	E160	02-Aug-2022					07-Aug-2022	7 days	5 days	~
Physical Tests : Turbidity by Nephelometry							-			
	E101	00.0					05 00000	0.1	0.1	,
SWMP-03-5M	E121	02-Aug-2022					05-Aug-2022	3 days	3 days	*
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)	5500	00 4.47 0000	44.4				11.0.0000	00.1	0.1	,
SWMP-03-10M	E508	02-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	9 days	•
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)	EEOP	02 Aug 2022	11 Aug 2022				11 Aug 2022	29 days	0 days	
SVVIVIE-00-11VI	EDUO	02-Aug-2022	11-Aug-2022				11-Aug-2022	∠o uays	9 uays	•
				1			1			

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🗸	= Within	Holding Time				
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	is					
Container / Client Sample ID(s)			Preparation	Holding Times		Holding Times		Holding Times		Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual					
Total Metals : Total Mercury in Water by CVAAS														
Glass vial - total (lab preserved)														
SWMP-03-5M	E508	02-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	9 days	✓				
Total Metals : Total Mercury in Water by CVAAS														
Glass vial - total (lab preserved)														
SWMP-03-5M DUP	E508	02-Aug-2022	11-Aug-2022				11-Aug-2022	28 days	9 days	4				
Total Metals : Total Metals in Water by CRC ICPMS														
HDPE - total (lab preserved)														
SWMP-03-1M	E420	02-Aug-2022	12-Aug-2022				12-Aug-2022	180	10 days	✓				
								days						
Total Metals : Total Metals in Water by CRC ICPMS														
HDPE - total (lab preserved)										,				
SWMP-03-5M	E420	02-Aug-2022	12-Aug-2022				12-Aug-2022	180	10 days	1				
								days						
Total Metals : Total Metals in Water by CRC ICPMS														
HDPE - total (lab preserved)	E 400									,				
SWMP-03-5M DUP	E420	02-Aug-2022	12-Aug-2022				12-Aug-2022	180	10 days	*				
								days						
Total Metals : Total Metals in Water by CRC ICPMS														
HDPE - total (lab preserved)	E 400	00.4	10.1				40.4			,				
SWMP-03-10M	E420	02-Aug-2022	12-Aug-2022				13-Aug-2022	180	11 days	*				
								days						

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water	Evaluation: \star = QC frequency outside specification; \star = QC frequency within specification.						
Quality Control Sample Type			Co	unt		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Total Coliforms and E. coli (Enzyme Substrate)	E010	586922	2	20	10.0	10.0	1
Total Mercury in Water by CVAAS	E508	598333	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	597719	2	38	5.2	5.0	✓
TSS by Gravimetry	E160	592053	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	590720	1	19	5.2	5.0	✓
Laboratory Control Samples (LCS)							
Total Mercury in Water by CVAAS	E508	598333	1	20	5.0	5.0	1
Total Metals in Water by CRC ICPMS	E420	597719	2	38	5.2	5.0	✓
TSS by Gravimetry	E160	592053	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	590720	1	19	5.2	5.0	✓
Method Blanks (MB)							
Total Coliforms and E. coli (Enzyme Substrate)	E010	586922	1	20	5.0	5.0	1
Total Mercury in Water by CVAAS	E508	598333	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	597719	2	38	5.2	5.0	\checkmark
TSS by Gravimetry	E160	592053	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	590720	1	19	5.2	5.0	✓
Matrix Spikes (MS)							
Total Mercury in Water by CVAAS	E508	598333	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	597719	2	38	5.2	5.0	✓

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Coliforms and E. coli (Enzyme Substrate)	E010	Water	APHA 9223 (mod)	The enzyme substrate test simultaneously detects Total Coliforms and E. coli in a 100 mL sample after incubation at $35.0 \pm 0.5^{\circ}$ C for either 18 or 24 hours (dependent on
	Vancouver -			reagent used).
	Environmental			
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Vancouver -			
	Environmental			
TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Vancouver -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Environmental			brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
Total Metals in Water by CRC ICPMS	E420	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
	Vancouver -			
	Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
	Vancouver -			
	Environmental			
Hardness (Calculated) from Total Ca/Mg	EC100A	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	Vancouver -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Environmental			calculated from dissolved Calcium and Magnesium concentrations, because it is a
				property of water due to dissolved divalent cations. Hardness from total Ca/Mg is
				normally comparable to Dissolved Hardness in non-turbid waters.

QUALITY CONTROL REPORT

Work Order	VA22B7778	Page	: 1 of 14
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	∶8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby, British Columbia Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	: +1 604 253 4188
Project	: 1303015 ENOS	Date Samples Received	: 03-Aug-2022 09:05
PO		Date Analysis Commenced	:03-Aug-2022
C-O-C number	: 20-982083	Issue Date	: 16-Aug-2022 14:30
Sampler	: HT/AA		
Site			
Quote number	: VA2022BCCF1000001		
No. of samples received	: 6		
No. of samples analysed	: 6		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Vancouver Metals, Burnaby, British Columbia
Brieanna Allen	Production/Validation Manager	Vancouver Microbiology, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Inorganics, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Vancouver Inorganics, Burnaby, British Columbia
Woochan Song	Lab Analyst	Vancouver Metals, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page: 3 of 14Work Order: VA22B7778Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

ub-Matrix: Water			Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 590720)										
KS2202780-004	Anonymous	turbidity		E121	0.10	NTU	0.16	0.19	0.03	Diff <2x LOR	
Physical Tests (QC	Lot: 592053)										
VA22B7778-002	SWMP-03-5M	solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0	0	Diff <2x LOR	
Microbiological Test	s (QC Lot: 586922)										
VA22B7782-004	Anonymous	coliforms, Escherichia coli [E. coli]		E010	1	MPN/100mL	<1	<1	0	Diff <2x LOR	
		coliforms, total		E010	1	MPN/100mL	<1	<1	0	Diff <2x LOR	
VA22B7813-001	Anonymous	coliforms, Escherichia coli [E. coli]		E010	10	MPN/100mL	<10	10	0	Diff <2x LOR	
		coliforms, total		E010	10	MPN/100mL	3650	3080	17.2%	65%	
Total Metals (QC Lo	t: 597719)										
FJ2202082-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0174	0.0162	0.0012	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00089	0.00086	0.00003	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00022	0.00022	0.000003	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.163	0.173	6.00%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.042	0.043	0.002	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0000807	0.0000940	15.2%	20%	
		calcium, total	7440-70-2	E420	0.050	mg/L	64.6	66.1	2.31%	20%	
		cesium, total	7440-46-2	E420	0.000010	mg/L	0.000029	0.000030	0.000002	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	0.00058	0.00059	0.000008	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00073	0.00074	0.00001	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	0.012	0.011	0.0006	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0412	0.0424	2.78%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	27.7	28.0	1.10%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00253	0.00267	5.39%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00390	0.00384	1.54%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.0124	0.0125	0.885%	20%	
		phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	2.13	2.16	1.42%	20%	

Page: 4 of 14Work Order: VA22B7778Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	t: 597719) - continued										
FJ2202082-001	Anonymous	rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00239	0.00235	1.78%	20%	
		selenium, total	7782-49-2	E420	0.000050	mg/L	0.00338	0.00348	2.97%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	1.07	1.09	2.01%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	16.6	16.8	1.10%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.316	0.312	1.30%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	42.0	42.9	2.14%	20%	
		tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000019	0.000020	0.0000006	Diff <2x LOR	
		thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	0.00030	0.00036	0.00006	Diff <2x LOR	
		tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00253	0.00256	1.13%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0034	0.0034	0.000008	Diff <2x LOR	
		zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
Total Metals (QC Lo	t: 598333)										
VA22B7752-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.0000050	0	Diff <2x LOR	
Total Metals (QC Lo	t: 599111)										
CG2210491-001	Anonymous	aluminum, total	7429-90-5	E420	0.0060	mg/L	<0.0060	<0.0060	0	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00020	mg/L	0.00244	0.00287	16.2%	20%	
		arsenic, total	7440-38-2	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00020	mg/L	0.0202	0.0203	0.539%	20%	
		beryllium, total	7440-41-7	E420	0.000040	mg/L	<0.040 µg/L	<0.000040	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.020	mg/L	0.099	0.116	0.017	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000100	mg/L	1.64 µg/L	0.00160	2.44%	20%	
		calcium, total	7440-70-2	E420	0.100	mg/L	614	727	16.8%	20%	
		cesium, total	7440-46-2	E420	0.000020	mg/L	0.000574	0.000669	15.4%	20%	
		chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00020	mg/L	51.0 µg/L	0.0497	2.44%	20%	
		copper, total	7440-50-8	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.020	mg/L	0.165	0.169	0.004	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	

Page: 5 of 14Work Order: VA22B7778Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Sub-Matrix: Water	ub-Matrix: Water				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC L	ot: 599111) - continue	ed									
CG2210491-001	Anonymous	lithium, total	7439-93-2	E420	0.0020	mg/L	1.16	1.36	15.8%	20%	
		magnesium, total	7439-95-4	E420	0.0100	mg/L	268	264	1.58%	20%	
		manganese, total	7439-96-5	E420	0.00020	mg/L	0.307	0.300	2.25%	20%	
		molybdenum, total	7439-98-7	E420	0.000100	mg/L	0.00459	0.00541	16.5%	20%	
		nickel, total	7440-02-0	E420	0.00100	mg/L	0.472	0.459	2.94%	20%	
		phosphorus, total	7723-14-0	E420	0.100	mg/L	<0.100	<0.100	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.100	mg/L	16.6	16.4	1.10%	20%	
		rubidium, total	7440-17-7	E420	0.00040	mg/L	0.0270	0.0269	0.308%	20%	
		selenium, total	7782-49-2	E420	0.000100	mg/L	129 µg/L	0.127	1.67%	20%	
		silicon, total	7440-21-3	E420	0.20	mg/L	2.85	2.84	0.319%	20%	
		silver, total	7440-22-4	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.100	mg/L	35.7	34.6	3.31%	20%	
		strontium, total	7440-24-6	E420	0.00040	mg/L	1.78	2.05	14.5%	20%	
		sulfur, total	7704-34-9	E420	1.00	mg/L	460	460	0.000128%	20%	
		tellurium, total	13494-80-9	E420	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR	
		thallium, total	7440-28-0	E420	0.000020	mg/L	0.000131	0.000159	0.000028	Diff <2x LOR	
		thorium, total	7440-29-1	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00060	mg/L	<0.00060	<0.00060	0	Diff <2x LOR	
		tungsten, total	7440-33-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000020	mg/L	0.0325	0.0386	17.2%	20%	
		vanadium, total	7440-62-2	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0060	mg/L	0.124	0.123	1.21%	20%	
		zirconium, total	7440-67-7	E420	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR	

Page	: 6 of 14
Work Order	: VA22B7778
Client	: The British Columbia Conservation Foundation
Project	: 1303015 ENOS

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 590720)						
turbidity		E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 592053)						
solids, total suspended [TSS]		E160	3	mg/L	<3.0	
Microbiological Tests (QCLot: 586922)					
coliforms, Escherichia coli [E. coli]		E010	1	MPN/100mL	<1	
coliforms, total		E010	1	MPN/100mL	<1	
Total Metals (QCLot: 597719)						
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cesium, total	7440-46-2	E420	0.00001	mg/L	<0.000010	
chromium, total	7440-47-3	E420	0.0005	mg/L	<0.00050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6	E420	0.01	mg/L	<0.010	
lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
phosphorus, total	7723-14-0	E420	0.05	mg/L	<0.050	
potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
rubidium, total	7440-17-7	E420	0.0002	mg/L	<0.00020	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
				1		

Page	: 7 of 14
Work Order	: VA22B7778
Client	: The British Columbia Conservation Foundation
Project	: 1303015 ENOS

Sub-Matrix: Water

Analyte CAS Number Method				Unit	Result	Qualifier
Total Metals (QCLot: 597719) - con	tinued					
sodium, total	7440-23-5	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
tellurium, total	13494-80-9	E420	0.0002	mg/L	<0.00020	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
thorium, total	7440-29-1	E420	0.0001	mg/L	<0.00010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
tungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	
Total Metals (QCLot: 598333)						
mercury, total	7439-97-6	E508	0.000005	mg/L	<0.000050	
Total Metals (QCLot: 599111)						
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cesium, total	7440-46-2	E420	0.00001	mg/L	<0.000010	
chromium, total	7440-47-3	E420	0.0005	mg/L	<0.00050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6	E420	0.01	mg/L	<0.010	
lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	

Page	: 8 of 14
Work Order	: VA22B7778
Client	: The British Columbia Conservation Foundation
Project	: 1303015 ENOS

Sub-Matrix: Water

Analyte	CAS Number Method			Unit	Result	Qualifier
Total Metals (QCLot: 599111) - con	tinued					
phosphorus, total	7723-14-0	E420	0.05	mg/L	<0.050	
potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
rubidium, total	7440-17-7	E420	0.0002	mg/L	<0.00020	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
tellurium, total	13494-80-9	E420	0.0002	mg/L	<0.00020	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
thorium, total	7440-29-1	E420	0.0001	mg/L	<0.00010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
tungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

b-Matrix: Water				Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 590720)									
turbidity		E121	0.1	NTU	200 NTU	98.5	85.0	115	
Physical Tests (QCLot: 592053)									
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	86.0	85.0	115	
Total Metals (QCLot: 597719)									
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	101	80.0	120	
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	105	80.0	120	
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	98.8	80.0	120	
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	97.2	80.0	120	
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	95.9	80.0	120	
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	98.1	80.0	120	
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	94.7	80.0	120	
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	96.8	80.0	120	
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	95.6	80.0	120	
cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	104	80.0	120	
chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	97.3	80.0	120	
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	97.7	80.0	120	
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	98.0	80.0	120	
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	101	80.0	120	
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	97.2	80.0	120	
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	95.4	80.0	120	
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	99.8	80.0	120	
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	97.6	80.0	120	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	103	80.0	120	
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	98.3	80.0	120	
phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	113	80.0	120	
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	104	80.0	120	
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	100	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	101	80.0	120	
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	101	80.0	120	
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	94.0	80.0	120	
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	96.7	80.0	120	
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	99.9	80.0	120	
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	92.9	80.0	120	

Page: 10 of 14Work Order: VA22B7778Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 597719) - continued									
tellurium, total	13494-80-9	E420	0.0002	mg/L	0.1 mg/L	98.7	80.0	120	
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	97.6	80.0	120	
thorium, total	7440-29-1	E420	0.0001	mg/L	0.1 mg/L	93.5	80.0	120	
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	98.1	80.0	120	
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	101	80.0	120	
tungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	99.2	80.0	120	
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	95.8	80.0	120	
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	99.0	80.0	120	
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	96.4	80.0	120	
zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	100.0	80.0	120	
Total Metals (QCLot: 598333)									
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	102	80.0	120	
Total Metals (QCLot: 599111)									
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	102	80.0	120	
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	103	80.0	120	
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	102	80.0	120	
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	103	80.0	120	
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	98.4	80.0	120	
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	101	80.0	120	
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	99.8	80.0	120	
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	103	80.0	120	
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	99.4	80.0	120	
cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	99.3	80.0	120	
chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	99.6	80.0	120	
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	98.9	80.0	120	
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	99.7	80.0	120	
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	103	80.0	120	
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	103	80.0	120	
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	97.4	80.0	120	
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	103	80.0	120	
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	98.5	80.0	120	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	104	80.0	120	
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	99.9	80.0	120	
phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	106	80.0	120	
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	104	80.0	120	
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	110	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	101	80.0	120	

Page: 11 of 14Work Order: VA22B7778Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report									
		-			Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Total Metals (QCLot: 599111) - continued										
silicon, total	7440-21-3 E	E420	0.1	mg/L	10 mg/L	101	80.0	120		
silver, total	7440-22-4 E	E420	0.00001	mg/L	0.1 mg/L	96.4	80.0	120		
sodium, total	7440-23-5 E	E420	0.05	mg/L	50 mg/L	104	80.0	120		
strontium, total	7440-24-6 E	E420	0.0002	mg/L	0.25 mg/L	101	80.0	120		
sulfur, total	7704-34-9 E	E420	0.5	mg/L	50 mg/L	98.6	80.0	120		
tellurium, total	13494-80-9 E	E420	0.0002	mg/L	0.1 mg/L	105	80.0	120		
thallium, total	7440-28-0 E	E420	0.00001	mg/L	1 mg/L	103	80.0	120		
thorium, total	7440-29-1 E	E420	0.0001	mg/L	0.1 mg/L	98.9	80.0	120		
tin, total	7440-31-5 E	E420	0.0001	mg/L	0.5 mg/L	103	80.0	120		
titanium, total	7440-32-6 E	E420	0.0003	mg/L	0.25 mg/L	99.8	80.0	120		
tungsten, total	7440-33-7 E	E420	0.0001	mg/L	0.1 mg/L	106	80.0	120		
uranium, total	7440-61-1 E	E420	0.00001	mg/L	0.005 mg/L	106	80.0	120		
vanadium, total	7440-62-2 E	E420	0.0005	mg/L	0.5 mg/L	102	80.0	120		
zinc, total	7440-66-6 E	E420	0.003	mg/L	0.5 mg/L	93.5	80.0	120		
zirconium, total	7440-67-7 E	E420	0.0002	mg/L	0.1 mg/L	99.6	80.0	120		

Page: 12 of 14Work Order: VA22B7778Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water						Matrix Spike (MS) Report									
Laboratory sample Client sample ID ID					Spi	ke	Recovery (%)	Recovery	Limits (%)						
		Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier					
Total Metals (QC	CLot: 597719)														
FJ2202082-002	Anonymous	aluminum, total	7429-90-5	E420	0.203 mg/L	0.2 mg/L	102	70.0	130						
		antimony, total	7440-36-0	E420	0.0200 mg/L	0.02 mg/L	100	70.0	130						
		arsenic, total	7440-38-2	E420	0.0208 mg/L	0.02 mg/L	104	70.0	130						
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130						
		beryllium, total	7440-41-7	E420	0.0374 mg/L	0.04 mg/L	93.5	70.0	130						
		bismuth, total	7440-69-9	E420	0.00917 mg/L	0.01 mg/L	91.7	70.0	130						
		boron, total	7440-42-8	E420	0.091 mg/L	0.1 mg/L	91.4	70.0	130						
		cadmium, total	7440-43-9	E420	0.00402 mg/L	0.004 mg/L	100	70.0	130						
		calcium, total	7440-70-2)-2 E420 ND mg/L		4 mg/L	ND	70.0	130						
		cesium, total	7440-46-2	E420	0.0100 mg/L	0.01 mg/L	100	70.0	130						
		chromium, total	7440-47-3	E420	0.0389 mg/L	0.04 mg/L	97.3	70.0	130						
		cobalt, total	7440-48-4	E420	0.0192 mg/L	0.02 mg/L	95.9	70.0	130						
		copper, total	7440-50-8	E420	0.0186 mg/L	0.02 mg/L	93.1	70.0	130						
		iron, total	7439-89-6	E420	1.91 mg/L	2 mg/L	95.7	70.0	130						
		lead, total	7439-92-1	E420	0.0184 mg/L	0.02 mg/L	92.2	70.0	130						
		lithium, total	7439-93-2	E420	0.0893 mg/L	0.1 mg/L	89.3	70.0	130						
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130						
		manganese, total	7439-96-5	E420	0.0191 mg/L	0.02 mg/L	95.5	70.0	130						
		molybdenum, total	7439-98-7	E420	0.0208 mg/L	0.02 mg/L	104	70.0	130						
		nickel, total	7440-02-0	E420	0.0369 mg/L	0.04 mg/L	92.4	70.0	130						
		phosphorus, total	7723-14-0	E420	11.3 mg/L	10 mg/L	113	70.0	130						
		potassium, total	7440-09-7	E420	3.76 mg/L	4 mg/L	93.9	70.0	130						
		rubidium, total	7440-17-7	E420	0.0200 mg/L	0.02 mg/L	100	70.0	130						
		selenium, total	7782-49-2	E420	0.0421 mg/L	0.04 mg/L	105	70.0	130						
		silicon, total	7440-21-3	E420	9.55 mg/L	10 mg/L	95.5	70.0	130						
		silver, total	7440-22-4	E420	0.00387 mg/L	0.004 mg/L	96.7	70.0	130						
		sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130						
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130						
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130						
		tellurium, total	13494-80-9	E420	0.0408 mg/L	0.04 mg/L	102	70.0	130						
		thallium, total	7440-28-0	E420	0.00368 mg/L	0.004 mg/L	91.9	70.0	130						
		thorium, total	7440-29-1	E420	0.0200 mg/L	0.02 mg/L	100	70.0	130						
1	1	tin, total	7440-31-5	F420	0.0202 mg/l	0.02 mg/l	101	70.0	130						

Page: 13 of 14Work Order: VA22B7778Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Sub-Matrix: Water					Matrix Spike (MS) Report								
					Spi	ike	Recovery (%)	Recovery	Limits (%)				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier			
Total Metals (QC	Lot: 597719) - continue	d											
FJ2202082-002	Anonymous	titanium, total	7440-32-6	E420	0.0423 mg/L	0.04 mg/L	106	70.0	130				
		tungsten, total	7440-33-7	E420	0.0200 mg/L	0.02 mg/L	99.9	70.0	130				
		uranium, total	7440-61-1	E420	0.00378 mg/L	0.004 mg/L	94.6	70.0	130				
		vanadium, total	7440-62-2	E420	0.102 mg/L	0.1 mg/L	102	70.0	130				
		zinc, total	7440-66-6	E420	0.379 mg/L	0.4 mg/L	94.8	70.0	130				
		zirconium, total	7440-67-7	E420	0.0406 mg/L	0.04 mg/L	101	70.0	130				
Total Metals (QC	Lot: 598333)												
VA22B7752-002	Anonymous	mercury, total	7439-97-6	E508	0.000104 mg/L	0.0001 mg/L	104	70.0	130				
Total Metals (QC	Lot: 599111)												
CG2210491-002	Anonymous	aluminum, total	7429-90-5	E420	0.995 ma/L	1 mg/L	99.5	70.0	130				
		antimony, total	7440-36-0	E420	0.102 mg/L	0.1 mg/L	102	70.0	130				
		arsenic, total	7440-38-2	E420	0.102 mg/L	0.1 mg/L	102	70.0	130				
		barium, total	7440-39-3	E420	0.0964 mg/L	0.1 mg/L	96.4	70.0	130				
		beryllium, total	7440-41-7	E420	0.187 mg/L	0.2 mg/L	93.4	70.0	130				
		bismuth, total	7440-69-9	E420	0.0451 mg/L	0.05 mg/L	90.2	70.0	130				
		boron, total	7440-42-8	E420	0.466 mg/L	0.5 mg/L	93.2	70.0	130				
		cadmium, total	7440-43-9	E420	0.0193 mg/L	0.02 mg/L	96.5	70.0	130				
		calcium, total	7440-70-2	E420	ND mg/L	20 mg/L	ND	70.0	130				
		cesium, total	7440-46-2	E420	0.0500 mg/L	0.05 mg/L	100.0	70.0	130				
		chromium, total	7440-47-3	E420	0.195 mg/L	0.2 mg/L	97.5	70.0	130				
		cobalt, total	7440-48-4	E420	0.0891 mg/L	0.1 mg/L	89.1	70.0	130				
		copper, total	7440-50-8	E420	0.0902 mg/L	0.1 mg/L	90.2	70.0	130				
		iron, total	7439-89-6	E420	9.37 mg/L	10 mg/L	93.7	70.0	130				
		lead, total	7439-92-1	E420	0.0931 mg/L	0.1 mg/L	93.1	70.0	130				
		lithium, total	7439-93-2	E420	ND mg/L	0.5 mg/L	ND	70.0	130				
		magnesium, total	7439-95-4	E420	ND mg/L	5 mg/L	ND	70.0	130				
		manganese, total	7439-96-5	E420	ND mg/L	0.1 mg/L	ND	70.0	130				
		molybdenum, total	7439-98-7	E420	0.108 mg/L	0.1 mg/L	108	70.0	130				
		nickel, total	7440-02-0	E420	ND mg/L	0.2 mg/L	ND	70.0	130				
		phosphorus, total	7723-14-0	E420	54.3 mg/L	50 mg/L	108	70.0	130				
		potassium, total	7440-09-7	E420	18.4 mg/L	20 mg/L	92.3	70.0	130				
		rubidium, total	7440-17-7	E420	0.105 mg/L	0.1 mg/L	105	70.0	130				
		selenium, total	7782-49-2	E420	0.190 mg/L	0.2 mg/L	94.8	70.0	130				
		silicon, total	7440-21-3	E420	50.4 mg/L	50 mg/L	101	70.0	130				
		silver, total	7440-22-4	E420	0.0199 mg/L	0.02 mg/L	99.4	70.0	130				
		sodium, total	7440-23-5	E420	ND mg/L	10 mg/L	ND	70.0	130				

Page: 14 of 14Work Order: VA22B7778Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Sub-Matrix: Water						Matrix Spike (MS) Report										
					Spi	ke	Recovery (%)	Recovery	Limits (%)							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier						
Total Metals (QC	Lot: 599111) - conti	nued														
CG2210491-002	Anonymous	strontium, total	7440-24-6	E420	ND mg/L	0.1 mg/L	ND	70.0	130							
		sulfur, total	7704-34-9	E420	ND mg/L	100 mg/L	ND	70.0	130							
		tellurium, total	13494-80-9	E420	0.196 mg/L	0.2 mg/L	97.9	70.0	130							
		thallium, total	7440-28-0	E420	0.0186 mg/L	0.02 mg/L	93.1	70.0	130							
		thorium, total	7440-29-1	E420	0.0977 mg/L	0.1 mg/L	97.7	70.0	130							
		tin, total	7440-31-5	E420	0.101 mg/L	0.1 mg/L	101	70.0	130							
		titanium, total	7440-32-6	E420	0.206 mg/L	0.2 mg/L	103	70.0	130							
		tungsten, total	7440-33-7	E420	0.101 mg/L	0.1 mg/L	101	70.0	130							
		uranium, total	7440-61-1	E420	ND mg/L	0.02 mg/L	ND	70.0	130							
		vanadium, total	7440-62-2	E420	0.511 mg/L	0.5 mg/L	102	70.0	130							
		zinc, total	7440-66-6	E420	1.68 mg/L	2 mg/L	84.1	70.0	130							
		zirconium, total	7440-67-7	E420	0.201 mg/L	0.2 mg/L	100	70.0	130							

www.alsglobal.com

Canada Toll Free: 1 800 668 9878

Page of

								Turner and Time (TAT) Descueded					24			10 B	Sec		
Report To	Contact and company name below will appe		port Reports / Recipients					Turnaround Time (TAT) Requested											
Company:	P UNXACIÓN T	Undernon .						X Routine [R] if received by 3pm M-F - no surcharges apply					um.						
Bhone:	They Koagers	LINL		Its to Criteria on Rom	rA Kg rEs ∟ ric	box checked		3 day [P3] if received by 3pm M-F + 25% rush surcharge minimum						AFFIX ALS BARCODE LABEL HERE					
Prione.	Company address below will appear on the final		Select Distributio			FAX	ō	2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum						(ALS use only)					
Streat	15105-1885 King and	Rad		heada.	~ Alacce	() + 0	□	1 day [E] if receive	d by 3pm M-F-	100% rushs	surcharge minim	ium						
Street:	Nuncion 20	TORA	mail 1 or Fax	Truager	sever.	um		Same d may ap	ay [E2] if rec sky to rush reo	eived by 10am . M Quests on weeker	ds, statutory h	ish surchange. Ad holidays and non-	routine tests	儒 萨 • • •	s. &	it . 11	& Z	8 20	
Postal Code:	NANAIMO BC		mail 3					Date and Time Required for all F&P TATS:						id-mmo.vvr hh:mm am/pm					
Invoice To	Same as Report To			Invoice	Recipients		-+-	For all tests with rush TATs requested, please contact your AM to confirm availability.											
	Conv of Invoice with Report 18 YES		Select Invoice Di	istribution:		I FAY	— 	Analysis Request											
Company:			Email 1 or Eax	troda	RARE	<u> </u>	- v	Indicate Fillered (F). Preserved (P) or Filtered and Preser							ved (F/P) below				
Contact:				Nedick (blef. Con	\tilde{c}									T- T	1	IRE	ě,	
	Project Information		 C	Dil and Gas Requ	ired Fields (client u	se)										1_1	ß	ů l	
ALS Account #/	Quote # VA 2072 PCCE	1000001	FE/Cost Center:		PO#		₹	S 4	a di							191	RE	ŝ	
Job #: 130	3015 FNOS	N N	lajor/Minor Code:	· · - · ·	Routing Code:				ミエリ	1						🍳	ы В	2	
PO/AFE:			Requisitioner:					5	5 +	1						1Ż	Σ.	N N	
LSD:	······································	i	ocation:			·	H	5 3	2 22	. 9						0	۲ <u>۶</u>	Ŧ	
8 35 P				C		-100		- -	- Z	$ \hat{o} $						I SI	ä.	12	
ALS Lab Wor	k Order # (ALS use only):	(· · · /	ALS Contact:	Snena	Sampler: 17	1 114-	ን ""	1	1	13	P	- [3]				1	ğ	1	
ALS Sample #	Sample Identification	n and/or Coordinates		Date	Time		2	ξ <u>\</u> _	<u>」</u> 2	M		$ \tilde{U} $				∑	Ē	L S	
(ALS use only)	(This description will a	appear on the report)		(od-mmm-yy)	(hh:mm)	Sample	^{ype} Z	1	4	<u> </u>			_			ઝે	ũ	<u></u>	
	SNMP-03- 1m	\sim		D2 -A16-	22 10:37	Wate	7 2	3	\mathbf{V}										
2	SINMO -03-5	\sim		10	10:40	1	2	3	-		~				J., "I "		<u>ن</u> ه.	· · · · ·	
	$\sin \sin \alpha = 3 = 5$	no dur		+ -	10:40		2	Σ					—.	Environ	mental	Divid	eion	,	
	$\frac{5000}{2}$	\sim				-	Vancouver												
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	Symp = Os = 0	<u>9</u>							Work Order Reference										
	SWMP- 04-11	\sim			10.53				+	<u> </u>			-	VA22B7778					
	Swmp -06- 11	\sim	_	v	1175	¥	/_	-				<u> </u>	-	V /			10	,	
															III T I V-1			1	
2 4 2													ł			0.4		1	
1 🗯 🏁		· · · · ·								•			1		ir ind	[P _]		1	
		<u> </u>			· · ·								1		11.4	極		i i	
									+ -+				-		19977	654F		l	
						+								retenhone ·	+ 1 604 253	4188			
				<u> </u>		<u> </u>						ECCIOT NCT			1001200	1100			
Drinking	g Water (DW) Samples ¹ (client use)	Notes / Specify	Limits for result (E	evaluation by sele Excel COC only)	cting from drop-down	below	Co												
Are samples take	n from a Regulated DW System?						Su	bmissi	on Comme	ents identified	I on Sampl	e Receipt No	otification:	<u>ж</u>	ÎΫ́ES [] NO 🗐	11. 11.	, 19	
. 🗆 YE	S 🗖 NO					*	Cő	Cooler Custody Seals Infact											
Are samples for human consumption/ use?			,					INITIAL COOLER TEMPERATURES °C 🔬 🚳 FINAL COOLER TEMPERATURES °C								199			
	5 🗖 NO						1	12								。 就			
	SHIPMENT RELEASE (client use)	5	1 T 1	INITIAL SHIPM	ENT RECEPTION (A	LS use only) (16	SV	<u>~~~</u> *	FINAL	SHIPMENT	RECEPTIC	ON (ALS us	e only) 🐭	у "Жа-	Â.	96j	
Released by:	HT Date: Aug 7	2/22 Time:	Received by:	* * X	Date:		Tin	ne: 🚿	Receiv	red by: 🦛	n J		3 aug	22	38 %.	Time: 90	150	2n-	
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING IN	FORMATION		1	WHITE - LABORATORY	COPY Y	ELLOW C	CLIENT	COPY				-				AUG	2020 FRO	

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

COC Number: 20 - 982083

CERTIFICATE OF ANALYSIS

Work Order	: VA22B8451	Page	: 1 of 4
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby BC Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	+1 604 253 4188
Project	: 1303015 ENOS	Date Samples Received	: 10-Aug-2022 09:00
PO	:	Date Analysis Commenced	: 10-Aug-2022
C-O-C number	: 20-992050	Issue Date	: 17-Aug-2022 16:52
Sampler	: TR/AB		-
Site			
Quote number	: VA2022BCCF1000001		
No. of samples received	: 6		
No. of samples analysed	: 6		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Microbiology, Burnaby, British Columbia
Miles Gropen	Department Manager - Inorganics	Microbiology, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Woochan Song	Lab Analyst	Metals, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
mg/L	milligrams per litre
MPN/100mL	most probable number per 100 mL
NTU	nephelometric turbidity units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Workorder Comments

Samples received with temperature >10 °C.

Sub-Matrix: Water Client sample ID				SWMP03-1m	SWMP03-5m	SWMP03-10m	SWMP03-10m	SWMP04-1m	
(Matrix: Water)								duplicate	
Client sampling date / time				09-Aug-2022 10:15	09-Aug-2022 10:22	09-Aug-2022 10:30	09-Aug-2022 10:30	09-Aug-2022 10:45	
Analyte	CAS Number	Method	LOR	Unit	VA22B8451-001	VA22B8451-002	VA22B8451-003	VA22B8451-004	VA22B8451-005
					Result	Result	Result	Result	Result
Physical Tests									
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	48.3	45.7	47.7	46.8	
solids, total suspended [TSS]		E160	3.0	mg/L		3.5			
turbidity		E121	0.10	NTU		1.39			
Microbiological Tests									
coliforms, Escherichia coli [E. coli]		E010	1	MPN/100mL	1				1
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0318	0.0250	0.0440	0.0447	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00025	0.00018	0.00032	0.00029	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0185	0.0168	0.0237	0.0230	
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.024	0.021	0.020	0.020	
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
calcium, total	7440-70-2	E420	0.050	mg/L	16.5	15.6	16.4	16.1	
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	0.00021	0.00021	
copper, total	7440-50-8	E420	0.00050	mg/L	0.00174	0.00130	0.00098	0.00092	
iron, total	7439-89-6	E420	0.010	mg/L	0.062	0.079	2.96	2.97	
lead, total	7439-92-1	E420	0.000050	mg/L	0.000892	0.00137	0.000235	0.000238	
lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	
magnesium, total	7439-95-4	E420	0.0050	mg/L	1.73	1.65	1.64	1.60	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0304	0.0397	0.304	0.303	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000198	0.000195	0.000134	0.000126	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	
potassium, total	7440-09-7	E420	0.050	mg/L	0.333	0.326	0.382	0.378	
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00052	0.00045	0.00050	0.00050	

(Matrix: Water)IndexduplicateduplicateList: SwapenList: Sampling date / time09-Aug-2022 10:1509-Aug-2022 10:2209-Aug-2022 10:3009-Aug-2022 10:3009-Aug-2022 10:3009-Aug-2022 10:3009-Aug-2022 10:3010:3009-Aug-2022 10:3010:3010:45AnalyteCAS NumberMethodLORUnitVA22B8451-001VA22B8451-002VA22B8451-003VA22B8451-004VA22B84
Client sampling date / time 09-Aug-2022 10:15 09-Aug-2022 10:22 09-Aug-2022 10:30 10:30
$\begin{tinuality}{ c c c c c c c c c c c c c c c c c c c$
Result Result<
Total Metals selenium, total 7782-49-2 E420 0.00050 mg/L 0.00082 0.00083 0.00092 0.00068 silicon, total 7440-21-3 E420 0.10 mg/L 2.76 3.01 4.16 4.19 silver, total 7440-22-4 E420 0.00010 mg/L <0.00010 <0.00010 <0.00010 <0.00010 < sodium, total 7440-22-5 E420 0.050 mg/L 7.77 7.44 7.31 7.24 sodium, total 7440-24-6 E420 0.00020 mg/L 0.0483 0.0484 0.0500 0.0482 strontium, total 7440-24-6 E420 0.00020 mg/L 1.62 1.67 0.60 0.72 sulfur, total 13494-80-9 E420 0.00020 mg/L <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020
selenium, total 7782-49-2 E420 0.00050 mg/L 0.00082 0.00083 0.00092 0.00068 silicon, total 7440-21-3 E420 0.10 mg/L 2.76 3.01 4.16 4.19 silver, total 7440-22-4 E420 0.00010 mg/L <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <
silicon, total 7440-21-3 E420 0.10 mg/L 2.76 3.01 4.16 4.19 silver, total 7440-22-4 E420 0.00010 mg/L <0.00010
silver, total 7440-22-4 E420 0.00010 mg/L <0.00010
sodium, total 7440-23-5 E420 0.050 mg/L 7.77 7.44 7.31 7.24 strontium, total 7440-24-6 E420 0.00020 mg/L 0.0493 0.0484 0.0500 0.0482 sulfur, total 7704-34-9 E420 0.50 mg/L 1.62 1.67 0.600 0.72 tellurium, total 13494-80-9 E420 0.0020 mg/L <0.00200
strontium, total 7440-24-6 E420 0.0020 mg/L 0.0493 0.0484 0.0500 0.0482 sulfur, total 7704-34-9 E420 0.500 mg/L 1.62 1.67 0.600 0.72 tellurium, total 13494-80-9 E420 0.0020 mg/L <0.0020
sulfur, total 7704-34-9 E420 0.50 mg/L 1.62 1.67 0.60 0.72 tellurium, total 13494-80-9 E420 0.0020 mg/L <0.0020 <0.0020 <0.0020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 < thallium, total 7440-28-0 E420 0.00010 mg/L <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 </th
tellurium, total 13494-80-9 E420 0.00020 mg/L <0.00020
thallium, total 7440-28-0 E420 0.000010 mg/L <0.000010
thorium, total 7440-29-1 E420 0.00010 mg/L <0.00010 <0.00010 <0.00010
tin, total 7440-31-5 E420 0.00010 mg/L <0.00010 <0.00010 <0.00010 <0.00010
titanium, total 7440-32-6 E420 0.00030 mg/L 0.00059 0.00092 0.00110 0.00124
tungsten, total 7440-33-7 E420 0.00010 mg/L <0.00010 <0.00010 <0.00010 <0.00010
uranium, total 7440-61-1 E420 0.00010 mg/L <0.00010 <0.00010 <0.00010 <0.00010
vanadium, total 7440-62-2 E420 0.00050 mg/L 0.00064 <0.00050 0.00111 0.00110
zinc, total 7440-66-6 E420 0.0030 mg/L 0.0263 0.0067 0.0038 <0.0030
zirconium, total 7440-67-7 E420 0.0020 mg/L <0.00020 <0.00020 <0.00020 <0.00020

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

Sub-Matrix: Water Client sample ID					SWMP06-1m	 	
(Matrix: Water)							
			Client samp	oling date / time	09-Aug-2022 11:00	 	
Analyte	CAS Number	Method	LOR	Unit	VA22B8451-006	 	
					Result	 	
Microbiological Tests							
coliforms, Escherichia coli [E. coli]		E010	1	MPN/100mL	2	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: VA22B8451	Page	: 1 of 6
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby, British Columbia Canada V5A 1W9
Telephone	250-390-2525	Telephone	: +1 604 253 4188
Project	: 1303015 ENOS	Date Samples Received	: 10-Aug-2022 09:00
PO	:	Issue Date	: 17-Aug-2022 16:52
C-O-C number	: 20-992050		ů –
Sampler	: TR/AB		
Site	:		
Quote number	: VA2022BCCF1000001		
No. of samples received	: 6		
No. of samples analysed	· 6		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- No Duplicate outliers occur.
- <u>No</u> Laboratory Control Sample (LCS) outliers occur
- <u>No</u> Matrix Spike outliers occur.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• <u>No</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: 🗶 =	Holding time exce	edance ; 🔹	= Withir	Holding Time
Analyte Group	Method	Sampling Date	Extraction / Preparation			Analysis				
Container / Client Sample ID(s)			Preparation Hold		Holding Times		Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Microbiological Tests : Total Coliforms and E. coli (Enzyme Substrate)										
Sterile HDPE (Sodium thiosulphate)										
SWMP06-1m	E010	09-Aug-2022					10-Aug-2022	30 hrs	25 hrs	1
Microbiological Tests : Total Coliforms and E. coli (Enzyme Substrate)										
Sterile HDPE (Sodium thiosulphate)										
SWMP03-1m	E010	09-Aug-2022					10-Aug-2022	30 hrs	26 hrs	~
Microbiological Tests : Total Coliforms and E. coli (Enzyme Substrate)										
Sterile HDPE (Sodium thiosulphate)	5040						40.0.0000			,
SWMP04-1m	E010	09-Aug-2022					10-Aug-2022	30 hrs	26 hrs	~
Physical Tests : TSS by Gravimetry										
	E160	00 Aug 2022					15 Aug 2022	7 dava	6 daya	
SWMP03-5m	EIOU	09-Aug-2022					15-Aug-2022	7 days	6 days	•
Director Tarte a Tarkidita ha Narakalara dur.										
SWMP03-5m	E121	09-Aug-2022					12-Aug-2022	3 davs	3 davs	1
								,-	,-	
Total Metals - Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
SWMP03-10m	E508	09-Aug-2022	17-Aug-2022				17-Aug-2022	28 days	8 days	1
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
SWMP03-10m duplicate	E508	09-Aug-2022	17-Aug-2022				17-Aug-2022	28 days	8 days	✓

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🗸	<pre>/ = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
SWMP03-1m	E508	09-Aug-2022	17-Aug-2022				17-Aug-2022	28 days	8 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
SWMP03-5m	E508	09-Aug-2022	17-Aug-2022				17-Aug-2022	28 days	8 days	1
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SWMP03-10m	E420	09-Aug-2022	16-Aug-2022				17-Aug-2022	180	8 days	~
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)	F 400		40.4 0000				17 1 0000			,
SWMP03-10m duplicate	E420	09-Aug-2022	16-Aug-2022				17-Aug-2022	180	8 days	*
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)	E420	00 4117 2022	10 4.1.7 2022				17 Aug 2000		0 dava	,
SWMP03-1m	E420	09-Aug-2022	16-Aug-2022				17-Aug-2022	180	8 days	*
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)	E420	00 Aug 2022	16 Aug 2022				17 Aug 2022	100	9 days	
5VVIVIP05-011	E420	09-Aug-2022	10-Aug-2022				17-Aug-2022	180 devia	o uays	•
								days		

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water	Evaluation: × = QC frequency outside specification; ✓ = QC frequency within specification.							
Quality Control Sample Type			Co	unt		Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)								
Total Coliforms and E. coli (Enzyme Substrate)	E010	596499	2	18	11.1	10.0	✓	
Total Mercury in Water by CVAAS	E508	605765	2	40	5.0	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	600764	1	20	5.0	5.0	✓	
TSS by Gravimetry	E160	602757	1	18	5.5	5.0	✓	
Turbidity by Nephelometry	E121	599884	1	20	5.0	5.0	✓	
Laboratory Control Samples (LCS)								
Total Mercury in Water by CVAAS	E508	605765	2	40	5.0	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	600764	1	20	5.0	5.0	✓	
TSS by Gravimetry	E160	602757	1	18	5.5	5.0	✓	
Turbidity by Nephelometry	E121	599884	1	20	5.0	5.0	✓	
Method Blanks (MB)								
Total Coliforms and E. coli (Enzyme Substrate)	E010	596499	1	18	5.5	5.0	✓	
Total Mercury in Water by CVAAS	E508	605765	2	40	5.0	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	600764	1	20	5.0	5.0	✓	
TSS by Gravimetry	E160	602757	1	18	5.5	5.0	✓	
Turbidity by Nephelometry	E121	599884	1	20	5.0	5.0	✓	
Matrix Spikes (MS)								
Total Mercury in Water by CVAAS	E508	605765	2	40	5.0	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	600764	1	20	5.0	5.0	✓	

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Coliforms and E. coli (Enzyme Substrate)	E010 Vancouver -	Water	APHA 9223 (mod)	The enzyme substrate test simultaneously detects Total Coliforms and E. coli in a 100 mL sample after incubation at $35.0 \pm 0.5^{\circ}$ C for either 18 or 24 hours (dependent on reagent used).
	Environmental			
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Vancouver -			
	Environmental			
TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Vancouver -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Environmental			brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
Total Metals in Water by CRC ICPMS	E420	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
	Vancouver -			
	Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
	Vancouver -			
	Environmental			
Hardness (Calculated) from Total Ca/Mg	EC100A	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	Vancouver -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Environmental			calculated from dissolved Calcium and Magnesium concentrations, because it is a
				property of water due to dissolved divalent cations. Hardness from total Ca/Mg is
				normally comparable to Dissolved Hardness in non-turbid waters.

QUALITY CONTROL REPORT

Work Order	·VA22B8451	Page	: 1 of 10
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
Telephone	250-390-2525	Telephone	:+1 604 253 4188
Project	: 1303015 ENOS	Date Samples Received	: 10-Aug-2022 09:00
PO	:	Date Analysis Commenced	: 10-Aug-2022
C-O-C number	: 20-992050	Issue Date	17-Aug-2022 16:52
Sampler	: TR/AB		
Site	:		
Quote number	: VA2022BCCF1000001		
No. of samples received	: 6		
No. of samples analysed	: 6		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Lindsay Gung	Supervisor - Water Chemistry	Vancouver Inorganics, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Vancouver Microbiology, Burnaby, British Columbia
Miles Gropen	Department Manager - Inorganics	Vancouver Microbiology, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Vancouver Metals, Burnaby, British Columbia
Woochan Song	Lab Analyst	Vancouver Metals, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page: 3 of 10Work Order: VA22B8451Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water						Labora	tory Duplicate (DU	IP) Report			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 599884)										
FJ2202111-001	Anonymous	turbidity		E121	0.10	NTU	16.3	15.5	4.90%	15%	
Physical Tests (QC	Lot: 602757)										
FJ2202116-004	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	3.9	3.1	0.8	Diff <2x LOR	
Microbiological Test	s (QC Lot: 596499)										
VA22B8451-001	SWMP03-1m	coliforms, Escherichia coli [E. coli]		E010	1	MPN/100mL	1	<1	0	Diff <2x LOR	
VA22B8470-002	Anonymous	coliforms, Escherichia coli [E. coli]		E010	1	MPN/100mL	5	3	52.4%	65%	
Total Metals (QC Lo	t: 600764)										
VA22B8451-001	SWMP03-1m	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0318	0.0346	8.17%	20%	
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00025	0.00022	0.00002	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0185	0.0184	0.485%	20%	
		beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.024	0.024	0.0002	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0000050	<0.000050	0	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	16.5	15.9	3.63%	20%	
		cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00174	0.00171	0.00003	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	0.062	0.062	0.0004	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	0.000892	0.000860	3.58%	20%	
		lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	1.73	1.72	0.768%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.0304	0.0301	1.04%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000198	0.000208	0.000010	Diff <2x LOR	
		nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	0.333	0.329	0.004	Diff <2x LOR	
		rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00052	0.00049	0.00002	Diff <2x LOR	
		selenium, total	7782-49-2	E420	0.000050	mg/L	0.000082	0.000075	0.000006	Diff <2x LOR	
l i i i i i i i i i i i i i i i i i i i	I contraction of the second			I I	1	(

Page: 4 of 10Work Order: VA22B8451Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Sub-Matrix: Water			Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	ot: 600764) - continued										
VA22B8451-001	SWMP03-1m	silicon, total	7440-21-3	E420	0.10	mg/L	2.76	2.64	4.28%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	7.77	7.65	1.58%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.0493	0.0490	0.631%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	1.62	1.43	0.18	Diff <2x LOR	
		tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	0.00059	0.00048	0.00010	Diff <2x LOR	
		tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00064	0.00060	0.00003	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0263	0.0254	0.0009	Diff <2x LOR	
		zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 605765)										
VA22B7816-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 605766)										
VA22B8451-002	SWMP03-5m	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

Page	: 5 of 10
Work Order	: VA22B8451
Client	: The British Columbia Conservation Foundation
Project	: 1303015 ENOS

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water					
Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 599884)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 602757)					
solids, total suspended [TSS]	E160	3	mg/L	<3.0	
Microbiological Tests (QCLot: 596499)					
coliforms, Escherichia coli [E. coli]	E010	1	MPN/100mL	<1	
Total Metals (QCLot: 600764)					
antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8 E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
cesium, total	7440-46-2 E420	0.00001	mg/L	<0.000010	
chromium, total	7440-47-3 E420	0.0005	mg/L	<0.00050	
cobalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6 E420	0.01	mg/L	<0.010	
lead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
phosphorus, total	7723-14-0 E420	0.05	mg/L	<0.050	
potassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
rubidium, total	7440-17-7 E420	0.0002	mg/L	<0.00020	
selenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E420	0.1	mg/L	<0.10	
silver, total	7440-22-4 E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5 E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6 E420	0.0002	mg/L	<0.00020	
			1		

Page	: 6 of 10
Work Order	: VA22B8451
Client	: The British Columbia Conservation Foundation
Project	: 1303015 ENOS

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 600764)	- continued					
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
tellurium, total	13494-80-9	E420	0.0002	mg/L	<0.00020	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
thorium, total	7440-29-1	E420	0.0001	mg/L	<0.00010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
tungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	
Total Metals (QCLot: 605765)						
mercury, total	7439-97-6	E508	0.000005	mg/L	<0.000050	
Total Metals (QCLot: 605766)						
mercury, total	7439-97-6	E508	0.000005	mg/L	<0.000050	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water			Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	v Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 599884)									
turbidity		E121	0.1	NTU	200 NTU	97.5	85.0	115	
Physical Tests (QCLot: 602757)									
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	95.5	85.0	115	
Total Metals (QCLot: 600764)									
aluminum, total	7429-90-5	E420		mg/L	2 mg/L	103	80.0	120	
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	100	80.0	120	
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	96.6	80.0	120	
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	97.5	80.0	120	
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	98.6	80.0	120	
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	102	80.0	120	
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	94.1	80.0	120	
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	96.6	80.0	120	
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	98.2	80.0	120	
cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	100	80.0	120	
chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	96.1	80.0	120	
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	96.2	80.0	120	
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	96.2	80.0	120	
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	101	80.0	120	
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	98.4	80.0	120	
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	97.5	80.0	120	
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	99.3	80.0	120	
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	97.4	80.0	120	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	99.9	80.0	120	
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	97.2	80.0	120	
phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	92.2	80.0	120	
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	101	80.0	120	
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	99.1	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	96.7	80.0	120	
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	103	80.0	120	
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	90.6	80.0	120	
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	100	80.0	120	
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	104	80.0	120	
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	94.6	80.0	120	

Page	: 8 of 10
Work Order	: VA22B8451
Client	: The British Columbia Conservation Foundation
Project	: 1303015 ENOS

Sub-Matrix: Water			Laboratory Control Sample (LCS) Report					
				Spike	Recovery (%)	Recovery	/ Limits (%)	
Analyte CAS	umber Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 600764) - continued								
tellurium, total 134	4-80-9 E420	0.0002	mg/L	0.1 mg/L	93.6	80.0	120	
thallium, total 74	D-28-0 E420	0.00001	mg/L	1 mg/L	102	80.0	120	
thorium, total 74	D-29-1 E420	0.0001	mg/L	0.1 mg/L	95.5	80.0	120	
tin, total 74	D-31-5 E420	0.0001	mg/L	0.5 mg/L	95.6	80.0	120	
titanium, total 74	D-32-6 E420	0.0003	mg/L	0.25 mg/L	94.3	80.0	120	
tungsten, total 74	D-33-7 E420	0.0001	mg/L	0.1 mg/L	95.6	80.0	120	
uranium, total 74	D-61-1 E420	0.00001	mg/L	0.005 mg/L	99.0	80.0	120	
vanadium, total 74	D-62-2 E420	0.0005	mg/L	0.5 mg/L	97.4	80.0	120	
zinc, total 74	D-66-6 E420	0.003	mg/L	0.5 mg/L	95.4	80.0	120	
zirconium, total 74	D-67-7 E420	0.0002	mg/L	0.1 mg/L	97.2	80.0	120	
Total Metals (QCLot: 605765)								
mercury, total 74	9-97-6 E508	0.000005	mg/L	0.0001 mg/L	100	80.0	120	
Total Metals (QCLot: 605766)								
mercury, total 74	9-97-6 E508	0.000005	mg/L	0.0001 mg/L	102	80.0	120	

Page	: 9 of 10
Work Order	: VA22B8451
Client	: The British Columbia Conservation Foundation
Project	: 1303015 ENOS

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water				SNumber Method Concentration Target 29-90-5 E420 0.204 mg/L 0.2 mg/L 40-36-0 E420 0.0196 mg/L 0.02 mg/L 40-38-2 E420 0.0194 mg/L 0.02 mg/L 40-39-3 E420 0.0201 mg/L 0.02 mg/L 40-41-7 E420 0.00991 mg/L 0.04 mg/L 40-42-8 E420 0.00991 mg/L 0.01 mg/L 40-42-8 E420 0.100 mg/L 0.11 mg/L 40-42-8 E420 0.00397 mg/L 0.004 mg/L 40-42-8 E420 0.0107 mg/L 0.01 mg/L 40-45-2 E420 0.0199 mg/L 0.01 mg/L 40-46-2 E420 0.0199 mg/L 0.02 mg/L 40-46-3 E420 0.0199 mg/L 0.02 mg/L 40-47-3 E420 0.0199 mg/L 0.02 mg/L 40-48-4 E420 0.0199 mg/L 0.02 mg/L 39-95-6 E420 0.0199 mg/L 0.02 mg/L 39-93-2 E420 0.0191 mg/L		Matrix Spik				
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Total Metals (QC	CLot: 600764)									
VA22B8451-002	SWMP03-5m	aluminum, total	7429-90-5	E420	0.204 mg/L	0.2 mg/L	102	70.0	130	
		antimony, total	7440-36-0	E420	0.0196 mg/L	0.02 mg/L	98.1	70.0	130	
		arsenic, total	7440-38-2	E420	0.0194 mg/L	0.02 mg/L	97.2	70.0	130	
		barium, total	7440-39-3	E420	0.0201 mg/L	0.02 mg/L	100	70.0	130	
		beryllium, total	7440-41-7	E420	0.0418 mg/L	0.04 mg/L	104	70.0	130	
		bismuth, total	7440-69-9	E420	0.00991 mg/L	0.01 mg/L	99.1	70.0	130	
		boron, total	7440-42-8	E420	0.100 mg/L	0.1 mg/L	100	70.0	130	
		cadmium, total	7440-43-9	E420	0.00397 mg/L	0.004 mg/L	99.2	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cesium, total	7440-46-2	E420	0.0107 mg/L	0.01 mg/L	107	70.0	130	
		chromium, total	7440-47-3	E420	0.0394 mg/L	0.04 mg/L	98.4	70.0	130	
		cobalt, total	7440-48-4	E420	0.0199 mg/L	0.02 mg/L	99.5	70.0	130	
		copper, total	7440-50-8	E420	0.0198 mg/L	0.02 mg/L	98.8	70.0	130	
		iron, total	7439-89-6	E420	1.93 mg/L	2 mg/L	96.5	70.0	130	
		lead, total	7439-92-1	E420	0.0191 mg/L	0.02 mg/L	95.7	70.0	130	
		lithium, total	7439-93-2	E420	0.0995 mg/L	0.1 mg/L	99.5	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0207 mg/L	0.02 mg/L	103	70.0	130	
		nickel, total	7440-02-0	E420	0.0403 mg/L	0.04 mg/L	101	70.0	130	
		phosphorus, total	7723-14-0	E420	9.30 mg/L	10 mg/L	93.0	70.0	130	
		potassium, total	7440-09-7	E420	3.98 mg/L	4 mg/L	99.6	70.0	130	
		rubidium, total	7440-17-7	E420	0.0196 mg/L	0.02 mg/L	98.1	70.0	130	
		selenium, total	7782-49-2	E420	0.0397 mg/L	0.04 mg/L	99.3	70.0	130	
		silicon, total	7440-21-3	E420	9.62 mg/L	10 mg/L	96.2	70.0	130	
		silver, total	7440-22-4	E420	0.00398 mg/L	0.004 mg/L	99.6	70.0	130	
		sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	20.0 mg/L	20 mg/L	100.0	70.0	130	
		tellurium, total	13494-80-9	E420	0.0382 mg/L	0.04 mg/L	95.6	70.0	130	
		thallium, total	7440-28-0	E420	0.00384 mg/L	0.004 mg/L	95.9	70.0	130	
		thorium, total	7440-29-1	E420	0.0203 mg/L	0.02 mg/L	102	70.0	130	
	1	tin, total	7440-31-5	E420	0.0196 ma/L	0.02 mg/L	98.2	70.0	130	

Page: 10 of 10Work Order: VA22B8451Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Sub-Matrix: Water			Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Total Metals (QCLot: 600764) - continued										
VA22B8451-002	SWMP03-5m	titanium, total	7440-32-6	E420	0.0402 mg/L	0.04 mg/L	101	70.0	130	
		tungsten, total	7440-33-7	E420	0.0195 mg/L	0.02 mg/L	97.4	70.0	130	
		uranium, total	7440-61-1	E420	0.00384 mg/L	0.004 mg/L	96.0	70.0	130	
		vanadium, total	7440-62-2	E420	0.0989 mg/L	0.1 mg/L	98.9	70.0	130	
		zinc, total	7440-66-6	E420	0.391 mg/L	0.4 mg/L	97.7	70.0	130	
		zirconium, total	7440-67-7	E420	0.0414 mg/L	0.04 mg/L	103	70.0	130	
Total Metals (QC	Lot: 605765)									
VA22B7816-002	Anonymous	mercury, total	7439-97-6	E508	0.000101 mg/L	0.0001 mg/L	101	70.0	130	
Total Metals (QC	Lot: 605766)									
VA22B8451-003	SWMP03-10m	mercury, total	7439-97-6	E508	0.0000988 mg/L	0.0001 mg/L	98.8	70.0	130	

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

COC Number: 20 - 992050

ALS Account #/ Quote # VA 2020 Street: Are samples for human consumption/ use? Are samples taken from a Regulated DW System? PO / AFE: City/Province: Phone: Contact: Job #: Invoice To Company: Report To Released by: S iontact: Company: ostal Code: (ALS use only) ALS Lab Work Order # (ALS use only): ALS Sample # *7*46 × * ŚŚ 54 68 . A 4 ۲ * . N 5 139 SP. Drinking Water (DW) Samples¹ (client use) N so i 1 □ ă 0 8 50 30 15 Ť. www.alsqlobal.com Copy of Invoice with Report Same as Report To 5881 - 50X# ⊡ ≷ Company address below will appear on the final report 230 -00 JWMS BC conservation foundation SW MP 03 -10 m SWMP 03-ろ SUMP DY Sw mp 03-Swmp 03-Sm Nanaimo B 5 ₹ SHIPMENT RELEASE (client use) AR B Contact and company name below will appear on the final report 390 2425 Ehos Project Information er BPOGN Sample Identification anti/or Coordinates (This description will appear on the report) Date: **POOR X COL** 3 Ĵ. 1 BUFIDDOD 09-08-22 03 F XX YSS □ ¥ K S □ 6 ext. 104 Total metals. Not filt./pres. in g Ś auplicate se ¢ \overline{S} . Be de. Notes / Specify Limits for result evaluation by selecting from drop-down below the set in Ar 1230 Ŕ Received by: Email 2 ALS Contact: AFE/Cost Center: Email 1 or Fax +rod gers ebcel-Select Distribution: Select Report Format: ; ▶ 第 続き NITIAL SHIPMENT RECEPTION (ALS use only) Requisitioner: Major/Minor Code: Email 2 Select Invoice Distribution: Email 3 Email 1 or Fax Compare Results to Criteria on Report - provide details below if box checked Merge QC/QCI Reports with COA ocation Imerit ke baf.com (Excel COC only) Oll and Gas Required Fields (client use) Sucha and a trodgers @ barf.com 04/08 4 (dd-mmm-yy) 2 2 S 5 1 Date D BMAIL いい ар Б **Reports / Recipients** Invoice Recipients 5 TATI EMAIL DI MAIL 繐 2 **N** Excel Date: PO# Sampler: Routing Code: X Yes I MAIL I FAX 0:30 i, 10:30 5h - U 10:22 11.00 51:0 998 19-10 (hh:mm) Time D B Ę field EDD (DIGITAL) e ^{de} 2007 Z 12 Sample Type U NA B writer s Ş 2 <u>_'</u> ٤ 1 Ğ,Ÿ fime: 🐇
 Active [R] if received by 3pm
 M-F - no surcharges apply

 4 day [P4] if received by 3pm
 M-F - 20% rush surcharge minimum

 3 day [P3] if received by 3pm
 M-F - 25% rush surcharge minimum

 3 day [P3] if received by 3pm
 M-F - 50% rush surcharge minimum

 2 day [P3] if received by 3pm
 M-F - 50% rush surcharge minimum

 1 day [E] if received by 3pm
 M-F - 100% rush surcharge minimum
 Submission Comments identified on Sample Receipt Notification: 🦜 🖓 🔭 🔲 🕫 🐐 دو □ Same day [E2] if received by 10am M-S - 200% rush surcharge. Additional may apply to rush requests on weekends, statutory holidays and non-routing Cooling Method: 🦓 🔲 - NONE N 🗍 🕯 ICE 2 ŝ ŝ NUMBER OF CONTAINERS ooler Custody Seals Intact. 🕷 🐂 🔲 YES 🕷 🗌 IVA Date and Time Required for all E&P TATs: < 39% < < Total meta 1 NALINAL PARTY Received by: < < < Hardness, Hg Turnaround Time (TAT) Requested Indicate Filtered (F), Preserved (P) or Filtered and P For all tests with rush TATs requested, please cont н¢, ۲ SAMPLE RECEIP de ³ 7*5*5 4 Tubidit 14 FINAL SHIPMENT RECEPTION 'N^{BE} Analysis Requ CE PACKS 🕸 🔲 , FROZEN 🦄 🐁 🔲 Date: DETAILS (ALS use only) -Page Sample Custody Seals Intact: 1 1 1 1 E. 601; < < Ğ <u>с</u>, Telephone: +1 604 253 4166 (ALS use only) **Environmental Division** Vancouver 5 Work Order Reference 9894 9894 VA22B845 . COOLING INITIATED R 20 52 de^r ×□ yes 🛛 🗤 🗠 1000 SAMPLES ON HOLD 2 2017 2 5 EXTENDED STORAGE REC . මේ ž SUSPECTED HAZARD (see 1

Feiture to complete all portions of this form may delay analysis. Please fill in this form LECIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy

WHITE - LABORATORY COPY

YELLOW - CLIENT COP

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

CERTIFICATE OF ANALYSIS

Work Order	: VA22B8970	Page	: 1 of 8
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby BC Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	+1 604 253 4188
Project	: 1303015 ENOS	Date Samples Received	: 16-Aug-2022 09:10
PO	:	Date Analysis Commenced	: 16-Aug-2022
C-O-C number	: 20-982084	Issue Date	25-Aug-2022 07:07
Sampler	: A B, T R		-
Site	:		
Quote number	: VA2022BCCF1000001		
No. of samples received	: 9		
No. of samples analysed	: 9		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Janice Leung	Supervisor - Organics Instrumentation	Organics, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Microbiology, Burnaby, British Columbia
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
µg/L	micrograms per litre
mg/kg	milligrams per kilogram
mg/L	milligrams per litre
MPN/100mL	most probable number per 100 mL
NTU	nephelometric turbidity units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLHM	Detection Limit Adjusted: Sample has high moisture content.
HTD	Hold time exceeded for re-analysis or dilution, but initial testing was conducted within hold time.

Sub-Matrix: Soil			Cl	lient sample ID	SWMP03	SWMP04	SWMP06		
(Matrix: Soil/Solid)									
			Client samp	ling date / time	15-Aug-2022 13:00	15-Aug-2022 13:30	15-Aug-2022 13:50		
Analyte	CAS Number	Method	LOR	Unit	VA22B8970-006	VA22B8970-007	VA22B8970-008		
					Result	Result	Result		
Physical Tests									
moisture		E144	0.25	%	94.9	58.7	35.9		
Polycyclic Aromatic Hydrocarbons					DUM				
acenaphthene	83-32-9	E641A	0.050	mg/kg	<0.164 DLHM	<0.050	<0.050		
acenaphthylene	208-96-8	E641A	0.050	mg/kg	<0.164 DLHM	<0.050	<0.050		
acridine	260-94-6	E641A	0.050	mg/kg	<0.164 DLHM	<0.050	<0.050		
anthracene	120-12-7	E641A	0.050	mg/kg	<0.164 DLHM	<0.050	<0.050		
benz(a)anthracene	56-55-3	E641A	0.050	mg/kg	0.168	<0.050	<0.050		
benzo(a)pyrene	50-32-8	E641A	0.050	mg/kg	0.268	<0.050	<0.050		
benzo(b+j)fluoranthene	n/a	E641A	0.050	mg/kg	0.575	<0.050	<0.050		
benzo(b+j+k)fluoranthene	n/a	E641A	0.075	mg/kg	0.575	<0.075	<0.075		
benzo(g,h,i)perylene	191-24-2	E641A	0.050	mg/kg	0.568	<0.050	<0.050		
benzo(k)fluoranthene	207-08-9	E641A	0.050	mg/kg	<0.164 DLHM	<0.050	<0.050		
chrysene	218-01-9	E641A	0.050	mg/kg	0.187	<0.050	<0.050		
dibenz(a,h)anthracene	53-70-3	E641A	0.050	mg/kg	<0.164 DLHM	<0.050	<0.050		
fluoranthene	206-44-0	E641A	0.050	mg/kg	0.480	<0.050	<0.050		
fluorene	86-73-7	E641A	0.050	mg/kg	<0.164 DLHM	<0.050	<0.050		
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.050	mg/kg	0.537	<0.050	<0.050		
methylnaphthalene, 1-	90-12-0	E641A	0.050	mg/kg	<0.164 DLHM	<0.050	<0.050		
methylnaphthalene, 1+2-		E641A	0.075	mg/kg	<0.232	<0.075	<0.075		
methylnaphthalene, 2-	91-57-6	E641A	0.050	mg/kg	<0.164 DLHM	<0.050	<0.050		
naphthalene	91-20-3	E641A	0.050	mg/kg	<0.164 DLHM	<0.050	<0.050		
phenanthrene	85-01-8	E641A	0.050	mg/kg	0.196	<0.050	<0.050		
pyrene	129-00-0	E641A	0.050	mg/kg	0.434	<0.050	<0.050		
quinoline	91-22-5	E641A	0.050	mg/kg	<0.164 DLHM	<0.050	<0.050		
B(a)P total potency equivalents [B(a)P TPE]		E641A	0.065	mg/kg	0.494	<0.065	<0.065		
IACR (CCME)		E641A	0.60	-	6.07	<0.60	<0.60		
IACR AB (coarse)		E641A	0.10	-	0.22	<0.10	<0.10		
IACR AB (fine)		E641A	0.10	-	0.42	<0.10	<0.10		
PAHs, total (BC Sched 3.4)	n/a	E641A	0.20	mg/kg	1.73	<0.20	<0.20		
PAHs, total (EPA 16)	n/a	E641A	0.20	mg/kg	3.41	<0.20	<0.20		
			1			l i i i i i i i i i i i i i i i i i i i	1	I	

Sub-Matrix: Soil			Ci	lient sample ID	SWMP03	SWMP04	SWMP06	
(Matrix: Soil/Solid)								
			Client samp	oling date / time	15-Aug-2022 13:00	15-Aug-2022 13:30	15-Aug-2022 13:50	
Analyte	CAS Number	Method	LOR	Unit	VA22B8970-006	VA22B8970-007	VA22B8970-008	
					Result	Result	Result	
Polycyclic Aromatic Hydrocarbons Surrogates								
acridine-d9	34749-75-2	E641A	0.1	%	86.5	88.9	83.5	
chrysene-d12	1719-03-5	E641A	0.1	%	88.9	89.5	89.0	
naphthalene-d8	1146-65-2	E641A	0.1	%	80.1	81.5	78.3	
phenanthrene-d10	1517-22-2	E641A	0.1	%	82.6	83.4	79.8	

Please refer to the General Comments section for an explanation of any qualifiers detected.

Sub-Matrix: Water			С	lient sample ID	SWMP03-1m	SWMP03-5m	SWMP03-10m	SWMP04-1m	SWMP06-1m
(Matrix: Water)									
			Client sam	oling date / time	15-Aug-2022 11:30	15-Aug-2022 11:35	15-Aug-2022 11:55	15-Aug-2022 13:15	15-Aug-2022 13:46
Analyte	CAS Number	Method	LOR	Unit	VA22B8970-001	VA22B8970-002	VA22B8970-003	VA22B8970-004	VA22B8970-005
					Result	Result	Result	Result	Result
Physical Tests		501004	0.00		10.0	45.4	40.0		
nardness (as CaCO3), from total Ca/Mg		ECTUDA	0.60	mg/L	48.0	45.4	46.8		
solids, total suspended [ISS]		E160	3.0	mg/L	<3.0	3.2	4.0		
turbialty		E121	0.10	NIU	1.11	1.20	3.08		
Anions and Nutrients	44005 44.0	E279 II	0.0010	mall	<0.0010 ^{HTD}	0.0012	<0.0010		
phosphate, ortho-, dissolved (as P)	14205-44-2	E372 II	0.0010	mg/L	~0.0010	0.0012	0.0010		
	7723-14-0	L372-0	0.0020	mg/L	0.0031	0.0100	0.0000		
coliforms, Escherichia coli [E, coli]		E010	1	MPN/100ml	2			<1	1
					_				
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0269	0.0165	0.0338		
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010		
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00025	0.00017	0.00033		
barium, total	7440-39-3	E420	0.00010	mg/L	0.0190	0.0182	0.0250		
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	<0.000100		
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050		
boron, total	7440-42-8	E420	0.010	mg/L	0.025	0.022	0.021		
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.000050	<0.000050	<0.000050		
calcium, total	7440-70-2	E420	0.050	mg/L	16.6	15.5	16.1		
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010		
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050		
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	0.00022		
copper, total	7440-50-8	E420	0.00050	mg/L	0.00168	0.00134	0.00087		
iron, total	7439-89-6	E420	0.010	mg/L	0.053	0.064	2.81		
lead, total	7439-92-1	E420	0.000050	mg/L	0.000942	0.000390	0.000122		
lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	<0.0010		
magnesium, total	7439-95-4	E420	0.0050	mg/L	1.74	1.63	1.60		
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0280	0.0368	0.340		
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.000050	<0.000050		
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000217	0.000191	0.000129		
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050		
phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	<0.050		

Sub-Matrix: Water			Cl	ient sample ID	SWMP03-1m	SWMP03-5m	SWMP03-10m	SWMP04-1m	SWMP06-1m
(Matrix: Water)									
			Client sampling date / time		15-Aug-2022 11:30	15-Aug-2022 11:35	15-Aug-2022 11:55	15-Aug-2022 13:15	15-Aug-2022 13:46
Analyte	CAS Number	Method	LOR	Unit	VA22B8970-001	VA22B8970-002	VA22B8970-003	VA22B8970-004	VA22B8970-005
					Result	Result	Result	Result	Result
Total Metals									
potassium, total	7440-09-7	E420	0.050	mg/L	0.350	0.334	0.391		
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00047	0.00037	0.00052		
selenium, total	7782-49-2	E420	0.000050	mg/L	0.000086	0.000078	0.000094		
silicon, total	7440-21-3	E420	0.10	mg/L	2.77	3.12	4.12		
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010		
sodium, total	7440-23-5	E420	0.050	mg/L	8.26	7.72	7.53		
strontium, total	7440-24-6	E420	0.00020	mg/L	0.0502	0.0465	0.0469		
sulfur, total	7704-34-9	E420	0.50	mg/L	1.64	1.87	0.90		
tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020		
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010		
thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010		
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010		
titanium, total	7440-32-6	E420	0.00030	mg/L	0.00037	0.00044	0.00094		
tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010		
uranium, total	7440-61-1	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010		
vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00055	<0.00050	0.00105		
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0069	0.0043	<0.0030		
zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020		
Plant Pigments									
chlorophyll a	479-61-8	E870	0.010	µg/L	5.78	10.0	10.4		

Please refer to the General Comments section for an explanation of any qualifiers detected.

Sub-Matrix: Water	ient sample ID	SWMP03-5m	 	 			
(Matrix: Water)					Duplicate		
		Client samp	ling date / time	15-Aug-2022 11:45	 	 	
Analyte	CAS Number	Method	LOR	Unit	VA22B8970-009	 	
					Result	 	
Physical Tests		504004	0.00		10.0		
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	46.0	 	
solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	 	
turbidity		E121	0.10	NTU	1.26	 	
Anions and Nutrients							
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0011	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0188	 	
Total Metals		E 400	0.0000	ä	0.0470		
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0178	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00021	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0184	 	
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	0.022	 	
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.000050	 	
calcium, total	7440-70-2	E420	0.050	mg/L	15.7	 	
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	 	
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	 	
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	 	
copper, total	7440-50-8	E420	0.00050	mg/L	0.00205	 	
iron, total	7439-89-6	E420	0.010	mg/L	0.063	 	
lead, total	7439-92-1	E420	0.000050	mg/L	0.000789	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	1.65	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0363	 	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000213	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	 	
phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	 	
potassium, total	7440-09-7	E420	0.050	mg/L	0.331	 	
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00039	 	

Sub-Matrix: Water			Cli	ient sample ID	SWMP03-5m	 	
(Matrix: Water)					Duplicate		
			Client samp	ling date / time	15-Aug-2022 11:45	 	
Analyte	CAS Number	Method	LOR	Unit	VA22B8970-009	 	
					Result	 	
Total Metals							
selenium, total	7782-49-2	E420	0.000050	mg/L	0.000092	 	
silicon, total	7440-21-3	E420	0.10	mg/L	3.02	 	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	 	
sodium, total	7440-23-5	E420	0.050	mg/L	7.76	 	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.0464	 	
sulfur, total	7704-34-9	E420	0.50	mg/L	1.64	 	
tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	 	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	 	
thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	 	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	 	
titanium, total	7440-32-6	E420	0.00030	mg/L	0.00046	 	
tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	 	
uranium, total	7440-61-1	E420	0.000010	mg/L	<0.000010	 	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	 	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0069	 	
zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	 	
Plant Pigments							
chlorophyll a	479-61-8	E870	0.010	µg/L	10.4	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: VA22B8970	Page	: 1 of 11
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby, British Columbia Canada V5A 1W9
Telephone	250-390-2525	Telephone	: +1 604 253 4188
Project	: 1303015 ENOS	Date Samples Received	: 16-Aug-2022 09:10
PO	:	Issue Date	: 25-Aug-2022 07:07
C-O-C number	: 20-982084		ů.
Sampler	: A B, T R		
Site	· · · · ·		
Quote number	: VA2022BCCF1000001		
No. of samples received	:9		
No. of samples analysed	· 9		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- No Duplicate outliers occur.
- <u>No</u> Laboratory Control Sample (LCS) outliers occur
- <u>No</u> Matrix Spike outliers occur.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Soil/Solid					Ev	aluation: × =	Holding time exce	edance ; ง	= Within	Holding Tim
Analyte Group	Method	hod Sampling Date Extraction / Preparation				Analysis				
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	, Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
SWMP03	E144	15-Aug-2022					23-Aug-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
SWMP04	E144	15-Aug-2022					23-Aug-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
SWMP06	E144	15-Aug-2022					23-Aug-2022			
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS										
Glass soil jar/Teflon lined cap										
SWMP03	E641A	15-Aug-2022	23-Aug-2022	14	8 days	1	24-Aug-2022	40 days	1 days	1
				days						
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS				_						
Glass soil jar/Teflon lined cap	50444	45 4	00.4		0.1	,	04.4	40	4	,
SWMP04	E641A	15-Aug-2022	23-Aug-2022	14	8 days	*	24-Aug-2022	40 days	1 days	•
				days						
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS										
Glass soil jar/Teflon lined cap	E641A	15 Aug 2022	22 444 2022		0 dava		24 Aug 2022	10 days	1 40.0	1
2000000	E041A	10-Aug-2022	23-Aug-2022	14 dovo	o days	¥	24-Aug-2022	40 days	rdays	v
				uays						
Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; •	<pre>/ = Within</pre>	Holding Tim
Analyte Group	Mathad	Sompling Data	Evi	traction / Pr	enaration			Analys	ie	

Analyte Group	Method	Sampling Date Extraction / Preparation Analysis					Analysis	
Container / Client Sample ID(s)			Preparation	Holding Times Eval		Analysis Date	Holding Times	Eval
			Date	Rec Actual			Rec Actual	

Matrix: Water					Eva	aluation: × =	Holding time excee	edance ; 🗸	<pre>< = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	evel 0.001									
HDPE SWMP03-10m	E378-U	15-Aug-2022	18-Aug-2022				18-Aug-2022	3 days	3 days	√
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	evel 0.001									
HDPE SWMP03-1m	E378-U	15-Aug-2022	18-Aug-2022				18-Aug-2022	3 days	3 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	evel 0.001									
HDPE SWMP03-5m	E378-U	15-Aug-2022	18-Aug-2022				18-Aug-2022	3 days	3 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	evel 0.001									
HDPE SWMP03-5m Duplicate	E378-U	15-Aug-2022	18-Aug-2022				18-Aug-2022	3 days	3 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) SWMP03-10m	E372-U	15-Aug-2022	23-Aug-2022				23-Aug-2022	28 days	8 days	√
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) SWMP03-1m	E372-U	15-Aug-2022	23-Aug-2022				23-Aug-2022	28 days	8 days	√
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) SWMP03-5m	E372-U	15-Aug-2022	23-Aug-2022				23-Aug-2022	28 days	8 days	√
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) SWMP03-5m Duplicate	E372-U	15-Aug-2022	23-Aug-2022				23-Aug-2022	28 days	8 days	√
Microbiological Tests : Total Coliforms and E. coli (Enzyme Substrate)										
Sterile HDPE (Sodium thiosulphate) SWMP04-1m	E010	15-Aug-2022					16-Aug-2022	30 hrs	24 hrs	✓

Matrix: Water					Ev	aluation: × =	Holding time excee	edance ; •	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Microbiological Tests : Total Coliforms and E. coli (Enzyme Substrate)										
Sterile HDPE (Sodium thiosulphate)										
SWMP06-1m	E010	15-Aug-2022					16-Aug-2022	30 hrs	24 hrs	~
Microbiological Tests : Total Coliforms and E. coli (Enzyme Substrate)										
Sterile HDPE (Sodium thiosulphate)	5040	45 4 0000								,
SWMP03-1m	E010	15-Aug-2022					16-Aug-2022	30 hrs	26 hrs	*
Physical Tests : TSS by Gravimetry					1					
	E160	15 Aug 2022					10 Aug 2022	7 days	1 dave	1
SWMP03-1011	L 100	13-Aug-2022					19-Aug-2022	1 uays	4 uays	•
Physical Tests : TSS by Gravimetry										
SWMP03-1m	F160	15-Aug-2022					19-Aug-2022	7 davs	4 davs	1
		·····g -·					·····g -·	·	, -	
Physical Tests - TSS by Gravimetry										
HDPE										
SWMP03-5m	E160	15-Aug-2022					19-Aug-2022	7 days	4 days	✓
Physical Tests : TSS by Gravimetry										
HDPE										
SWMP03-5m Duplicate	E160	15-Aug-2022					19-Aug-2022	7 days	4 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
SWMP03-10m	E121	15-Aug-2022					16-Aug-2022	3 days	1 days	~
Physical Tests : Turbidity by Nephelometry										
HDPE	F101	15 4					10.0.0000	0.1		,
SWMP03-1m	E121	15-Aug-2022					16-Aug-2022	3 days	1 days	•
Physical Tests : Turbidity by Nephelometry										
SWMP03-5m	F121	15-Aug-2022					16-Aug-2022	3 days	1 dave	1
	L121	10, 109-2022					10, 109-2022	C days	i dayo	

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🔹	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext		Anal		alysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Turbidity by Nephelometry										
HDPE SW/MD02 5m Duplicate	E121	15 Aug 2022					16 Aug 2022	3 days	1 dave	
Swwr-03-3h Dupilcate		13-Aug-2022					10-Aug-2022	Juays	i uays	•
Plant Pigments : Chlorophyll-a by Fluorometry										
Opaque HDPE										
SWMP03-10m	E870	15-Aug-2022	16-Aug-2022	2 days	1 days	1	17-Aug-2022	672 hrs	1 days	√
Plant Pigments : Chlorophyll-a by Fluorometry										
Opaque HDPE										
SWMP03-1m	E870	15-Aug-2022	16-Aug-2022	2 days	1 days	✓	17-Aug-2022	672 hrs	1 days	1
Diant Dismonto : Chiaranhull a hu Eluaramatru										
SWMP03-5m	E870	15-Aug-2022	16-Aug-2022	2 days	1 days	1	17-Aug-2022	672 hrs	1 days	✓
Plant Pigments : Chlorophyll-a by Fluorometry								_		
Opaque HDPE SW/MD03 5m Duplicate	E870	15-Aug-2022	16-Aug-2022	2 days	1 dave	1	17-Aug-2022	672 hrs	1 dave	1
	2010	10 / 10 2022	107/ug-2022	2 days	1 days	·	17-7 dg-2022	0721113	1 days	·
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
SWMP03-10m	E508	15-Aug-2022	22-Aug-2022				22-Aug-2022	28 days	7 days	~
Class vial total (lab preserved)										
SWMP03-1m	E508	15-Aug-2022	22-Aug-2022				22-Aug-2022	28 days	7 days	1
							-			
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
SWMP03-5m	E508	15-Aug-2022	22-Aug-2022				22-Aug-2022	28 days	7 days	~
Total Metals - Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
SWMP03-5m Duplicate	E508	15-Aug-2022	22-Aug-2022				22-Aug-2022	28 days	7 days	✓

Matrix: Water					E١	aluation: × =	Holding time excee	edance ; 🔹	<pre>/ = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Extraction / Preparation			Analysis				
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SWMP03-10m	E420	15-Aug-2022	18-Aug-2022				18-Aug-2022	180	4 days	1
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SWMP03-1m	E420	15-Aug-2022	18-Aug-2022				18-Aug-2022	180	4 days	1
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SWMP03-5m	E420	15-Aug-2022	18-Aug-2022				18-Aug-2022	180	4 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SWMP03-5m Duplicate	E420	15-Aug-2022	18-Aug-2022				18-Aug-2022	180	4 days	✓
								days		

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).
Total Phosphorus by Colourimetry (0.002 mg/L)

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Soil/Solid	Evaluation: × = QC frequency outside specification; ✓ = QC frequency within specificati							
Quality Control Sample Type			ount	Frequency (%)				
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)								
Moisture Content by Gravimetry	E144	614229	1	8	12.5	5.0	✓	
PAHs by Hex:Ace GC-MS	E641A	614227	1	3	33.3	5.0	✓	
Laboratory Control Samples (LCS)								
Moisture Content by Gravimetry	E144	614229	1	8	12.5	5.0	✓	
PAHs by Hex:Ace GC-MS	E641A	614227	1	3	33.3	5.0	✓	
Method Blanks (MB)								
Moisture Content by Gravimetry	E144	614229	1	8	12.5	5.0	1	
PAHs by Hex:Ace GC-MS	E641A	614227	1	3	33.3	5.0	✓	
Matrix Spikes (MS)								
PAHs by Hex:Ace GC-MS	E641A	614227	1	3	33.3	5.0	✓	
Matrix: Water		Evaluatio	on: × = QC freque	ency outside spe	ecification; ✓ = (QC frequency wit	thin specification.	
Quality Control Sample Type			Co	ount		Frequency (%))	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)								
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	607710	1	5	20.0	5.0	✓	
Total Coliforms and E. coli (Enzyme Substrate)	E010	604873	2	16	12.5	10.0	✓	
Total Mercury in Water by CVAAS	E508	612858	1	20	5.0	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	605128	1	12	8.3	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	614138	1	17	5.8	5.0	✓	
TSS by Gravimetry	E160	609891	1	20	5.0	5.0	✓	
Turbidity by Nephelometry	E121	604666	1	14	7.1	5.0	✓	
Laboratory Control Samples (LCS)								
Chlorophyll-a by Fluorometry	E870	604898	1	6	16.6	5.0	✓	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	607710	1	5	20.0	5.0	✓	
Total Mercury in Water by CVAAS	E508	612858	1	20	5.0	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	605128	1	12	8.3	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	614138	1	17	5.8	5.0	✓	
TSS by Gravimetry	E160	609891	1	20	5.0	5.0	✓	
Turbidity by Nephelometry	E121	604666	1	14	7.1	5.0	✓	
Method Blanks (MB)								
Chlorophyll-a by Fluorometry	E870	604898	1	6	16.6	5.0	✓	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	607710	1	5	20.0	5.0	✓	
Total Coliforms and E. coli (Enzyme Substrate)	E010	604873	1	16	6.2	5.0	✓	
Total Mercury in Water by CVAAS	E508	612858	1	20	5.0	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	605128	1	12	8.3	5.0	✓	

E372-U

614138

17

1

5.0

 \checkmark

5.8

Page	: 9 of 11
Work Order	: VA22B8970
Client	: The British Columbia Conservation Foundation
Project	: 1303015 ENOS

Matrix: Water		Evaluation	n: × = QC freque	ency outside spe	ecification; ✓ = 0	QC frequency wit	thin specification.
Quality Control Sample Type			Co	ount	Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Method Blanks (MB) - Continued							
TSS by Gravimetry	E160	609891	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	604666	1	14	7.1	5.0	✓
Matrix Spikes (MS)							
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	607710	1	5	20.0	5.0	✓
Total Mercury in Water by CVAAS	E508	612858	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	605128	1	12	8.3	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	614138	1	17	5.8	5.0	✓

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Moisture Content by Gravimetry	E144 Vancouver -	Soil/Solid	CCME PHC in Soil - Tier 1	Moisture is measured gravimetrically by drying the sample at 105°C. Moisture content is calculated as the weight loss (due to water) divided by the wet weight of the sample, expressed as a percentage.
	Environmental			
PAHs by Hex:Ace GC-MS	E641A Vancouver -	Soil/Solid	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are extracted with hexane/acetone and analyzed by GC-MS. If reported, IACR (index of additive cancer risk, unitless) and B(a)P toxic potency equivalent (in soil concentration units) are calculated as per CCME
Total Coliforms and E. coli (Enzyme Substrate)		Water	APHA 9223 (mod)	The entrine substrate test simultaneously dataste Tatal California and E cali in a 100
Total Collionns and L. coll (Enzyme Substrate)	Vancouver -	Water	AFTIA 3223 (1104)	mL sample after incubation at 35.0 ± 0.5 °C for either 18 or 24 hours (dependent on reagent used).
Turbidity by Nephelometry	E121 Vancouver - Environmental	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
TSS by Gravimetry	E160 Vancouver - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Vancouver - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U Vancouver - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling
Total Metals in Water by CRC ICPMS	E420 Vancouver -	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
	Environmental			wethod Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method
Total Mercury in Water by CVAAS	E508 Vancouver -	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
	Environmental			

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Chlorophyll-a by Fluorometry	E870 Vancouver - Environmental	Water	EPA 445.0 (mod)	Chlorophyll a is determined by solvent extraction followed with analysis by fluorometry using the non-acidification procedure. This method is not subject to interferences from chlorophyll b.
Hardness (Calculated) from Total Ca/Mg	EC100A Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations. Hardness from total Ca/Mg is normally comparable to Dissolved Hardness in non-turbid waters.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
PHCs and PAHs Hexane-Acetone Tumbler Extraction	EP601 Vancouver - Environmental	Soil/Solid	CCME PHC in Soil - Tier 1 (mod)	Samples are subsampled and Petroleum Hydrocarbons (PHC) and PAHs are extracted with 1:1 hexane:acetone using a rotary extractor.
Digestion for Total Phosphorus in water	EP372 Vancouver - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Chlorophyll-a Extraction	EP870 Vancouver - Environmental	Water	EPA 445.0 (mod)	Chlorophyll-a solvent extraction.

QUALITY CONTROL REPORT

Work Order	·VA22B8970	Page	: 1 of 14
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	:8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby, British Columbia Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	: +1 604 253 4188
Project	: 1303015 ENOS	Date Samples Received	: 16-Aug-2022 09:10
PO	:	Date Analysis Commenced	: 16-Aug-2022
C-O-C number	: 20-982084	Issue Date	25-Aug-2022 07:07
Sampler	: A B, T R		
Site	:		
Quote number	: VA2022BCCF1000001		
No. of samples received	: 9		
No. of samples analysed	: 9		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Janice Leung	Supervisor - Organics Instrumentation	Vancouver Organics, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Metals, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Vancouver Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Vancouver Inorganics, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Vancouver Microbiology, Burnaby, British Columbia
Miles Gropen	Department Manager - Inorganics	Vancouver Inorganics, Burnaby, British Columbia
Owen Cheng		Vancouver Metals, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page: 3 of 14Work Order: VA22B8970Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Laboratory Duplicate (DUP) Report

KS2202988-001

Anonymous

Anions and Nutrients (QC Lot: 614138)

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

ub-Matrix: Soil/Solid					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	: Lot: 614229)										
VA22B8970-006	SWMP03	moisture		E144	0.25	%	94.9	94.8	0.0836%	20%	
Polycyclic Aromatic	c Hydrocarbons (QC	Lot: 614227)									
VA22B8970-006	SWMP03	acenaphthene	83-32-9	E641A	0.147	mg/kg	<0.164	<0.147	0.017	Diff <2x LOR	
		acenaphthylene	208-96-8	E641A	0.147	mg/kg	<0.164	<0.147	0.017	Diff <2x LOR	
		acridine	260-94-6	E641A	0.147	mg/kg	<0.164	<0.147	0.017	Diff <2x LOR	
		anthracene	120-12-7	E641A	0.147	mg/kg	<0.164	<0.147	0.017	Diff <2x LOR	
		benz(a)anthracene	56-55-3	E641A	0.147	mg/kg	0.168	<0.147	0.021	Diff <2x LOR	
	benzo(a)pyrene	50-32-8	E641A	0.147	mg/kg	0.268	0.238	0.030	Diff <2x LOR		
	benzo(b+j)fluoranthene	n/a	E641A	0.147	mg/kg	0.575	0.467	0.108	Diff <2x LOR		
	benzo(g,h,i)perylene	191-24-2	E641A	0.147	mg/kg	0.568	0.483	0.084	Diff <2x LOR		
		benzo(k)fluoranthene	207-08-9	E641A	0.147	mg/kg	<0.164	<0.147	0.017	Diff <2x LOR	
		chrysene	218-01-9	E641A	0.147	mg/kg	0.187	0.151	0.036	Diff <2x LOR	
		dibenz(a,h)anthracene	53-70-3	E641A	0.147	mg/kg	<0.164	<0.147	0.017	Diff <2x LOR	
		fluoranthene	206-44-0	E641A	0.147	mg/kg	0.480	0.404	0.076	Diff <2x LOR	
		fluorene	86-73-7	E641A	0.147	mg/kg	<0.164	<0.147	0.017	Diff <2x LOR	
		indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.147	mg/kg	0.537	0.473	0.064	Diff <2x LOR	
		methylnaphthalene, 1-	90-12-0	E641A	0.147	mg/kg	<0.164	<0.147	0.017	Diff <2x LOR	
		methylnaphthalene, 2-	91-57-6	E641A	0.147	mg/kg	<0.164	<0.147	0.017	Diff <2x LOR	
		naphthalene	91-20-3	E641A	0.147	mg/kg	<0.164	<0.147	0.017	Diff <2x LOR	
		phenanthrene	85-01-8	E641A	0.147	mg/kg	0.196	0.169	0.027	Diff <2x LOR	
		pyrene	129-00-0	E641A	0.147	mg/kg	0.434	0.360	0.074	Diff <2x LOR	
		quinoline	91-22-5	E641A	0.147	mg/kg	<0.164	<0.147	0.017	Diff <2x LOR	
Sub-Matrix: Water	·			·			Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 604666)										
KS2202962-001	Anonymous	turbidity		E121	0.10	NTU	0.45	0.43	0.03	Diff <2x LOR	
Physical Tests (QC	: Lot: 609891)										
FJ2202165-001	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 607710)										

14265-44-2 E378-U

0.200

mg/L

6.26

6.30

0.713%

20%

phosphate, ortho-, dissolved (as P)

Page: 4 of 14Work Order: VA22B8970Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrient	s (QC Lot: 614138) - co	ntinued									
KS2203005-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0375	0.0376	0.293%	20%	
Microbiological Test	s (QC Lot: 604873)										
VA22B8970-001	SWMP03-1m	coliforms, Escherichia coli [E. coli]		E010	1	MPN/100mL	2	<1	1	Diff <2x LOR	
VA22B8987-006	Anonymous	coliforms, Escherichia coli [E. coli]		E010	1	MPN/100mL	<1	<1	0	Diff <2x LOR	
Total Metals (QC Lo	t: 605128)										
VA22B8970-001	SWMP03-1m	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0269	0.0280	0.0011	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00025	0.00026	0.00001	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0190	0.0192	1.02%	20%	
		beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.025	0.025	0.00003	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0000050	<0.000050	0	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	16.6	16.6	0.107%	20%	
		cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00168	0.00170	0.00001	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	0.053	0.054	0.0010	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	0.000942	0.000986	4.62%	20%	
		lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	1.74	1.75	0.743%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.0280	0.0282	0.575%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000217	0.000213	0.000004	Diff <2x LOR	
		nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	0.350	0.350	0.0002	Diff <2x LOR	
		rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00047	0.00050	0.00003	Diff <2x LOR	
		selenium, total	7782-49-2	E420	0.000050	mg/L	0.000086	0.000068	0.000018	Diff <2x LOR	
		silicon, total	7440-21-3	E420	0.10	mg/L	2.77	2.81	1.28%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	8.26	8.17	1.07%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.0502	0.0499	0.565%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	1.64	1.72	0.07	Diff <2x LOR	
		tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	

Page: 5 of 14Work Order: VA22B8970Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lot: 605128) - continued											
VA22B8970-001	SWMP03-1m	thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	0.00037	0.00044	0.00007	Diff <2x LOR	
		tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00055	0.00059	0.00004	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0069	0.0072	0.0003	Diff <2x LOR	
		zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
Total Metals (QC Lo	t: 612858)										
FJ2202192-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Soil/Solid

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 614229)						
moisture		E144	0.25	%	<0.25	
Polycyclic Aromatic Hydrocarbons (QCLo	ot: 614227)					
acenaphthene	83-32-9	E641A	0.05	mg/kg	<0.050	
acenaphthylene	208-96-8	E641A	0.05	mg/kg	<0.050	
acridine	260-94-6	E641A	0.05	mg/kg	<0.050	
anthracene	120-12-7	E641A	0.05	mg/kg	<0.050	
benz(a)anthracene	56-55-3	E641A	0.05	mg/kg	<0.050	
benzo(a)pyrene	50-32-8	E641A	0.05	mg/kg	<0.050	
benzo(b+j)fluoranthene	n/a	E641A	0.05	mg/kg	<0.050	
benzo(g,h,i)perylene	191-24-2	E641A	0.05	mg/kg	<0.050	
benzo(k)fluoranthene	207-08-9	E641A	0.05	mg/kg	<0.050	
chrysene	218-01-9	E641A	0.05	mg/kg	<0.050	
dibenz(a,h)anthracene	53-70-3	E641A	0.05	mg/kg	<0.050	
fluoranthene	206-44-0	E641A	0.05	mg/kg	<0.050	
fluorene	86-73-7	E641A	0.05	mg/kg	<0.050	
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.05	mg/kg	<0.050	
methylnaphthalene, 1-	90-12-0	E641A	0.05	mg/kg	<0.050	
methylnaphthalene, 2-	91-57-6	E641A	0.05	mg/kg	<0.050	
naphthalene	91-20-3	E641A	0.05	mg/kg	<0.050	
phenanthrene	85-01-8	E641A	0.05	mg/kg	<0.050	
pyrene	129-00-0	E641A	0.05	mg/kg	<0.050	
quinoline	91-22-5	E641A	0.05	mg/kg	<0.050	

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier			
Physical Tests (QCLot: 604666)									
turbidity		E121	0.1	NTU	<0.10				
Physical Tests (QCLot: 609891)									
solids, total suspended [TSS]		E160	3	mg/L	<3.0				
Anions and Nutrients (QCLot: 607710)									
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	<0.0010				
Anions and Nutrients (QCLot: 614138)									
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020				

Page	: 7 of 14
Work Order	: VA22B8970
Client	: The British Columbia Conservation Foundation
Project	: 1303015 ENOS

Analyte CAS Number	r Method	LOR	Unit	Result	Qualifier
Microbiological Tests (QCLot: 604873)					
coliforms, Escherichia coli [E. coli]	E010	1	MPN/100mL	<1	
Total Metals (QCLot: 605128)					
aluminum, total 7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total 7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total 7440-38-2	E420	0.0001	mg/L	<0.00010	
barium, total 7440-39-3	E420	0.0001	mg/L	<0.00010	
beryllium, total 7440-41-7	E420	0.00002	mg/L	<0.000020	
bismuth, total 7440-69-9	E420	0.00005	mg/L	<0.000050	
boron, total 7440-42-8	E420	0.01	mg/L	<0.010	
cadmium, total 7440-43-9	E420	0.000005	mg/L	<0.000050	
calcium, total 7440-70-2	E420	0.05	mg/L	<0.050	
cesium, total 7440-46-2	E420	0.00001	mg/L	<0.000010	
chromium, total 7440-47-3	E420	0.0005	mg/L	<0.00050	
cobalt, total 7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total 7440-50-8	E420	0.0005	mg/L	<0.00050	
iron, total 7439-89-6	E420	0.01	mg/L	<0.010	
lead, total 7439-92-1	E420	0.00005	mg/L	<0.000050	
lithium, total 7439-93-2	E420	0.001	mg/L	<0.0010	
magnesium, total 7439-95-4	E420	0.005	mg/L	<0.0050	
manganese, total 7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total 7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total 7440-02-0	E420	0.0005	mg/L	<0.00050	
phosphorus, total 7723-14-0	E420	0.05	mg/L	<0.050	
potassium, total 7440-09-7	E420	0.05	mg/L	<0.050	
rubidium, total 7440-17-7	E420	0.0002	mg/L	<0.00020	
selenium, total 7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total 7440-21-3	E420	0.1	mg/L	<0.10	
silver, total 7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total 7440-23-5	E420	0.05	mg/L	<0.050	
strontium, total 7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total 7704-34-9	E420	0.5	mg/L	<0.50	
tellurium, total 13494-80-9	E420	0.0002	mg/L	<0.00020	
thallium, total 7440-28-0	E420	0.00001	mg/L	<0.000010	
thorium, total 7440-29-1	E420	0.0001	mg/L	<0.00010	
tin, total 7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total 7440-32-6	E420	0.0003	mg/L	<0.00030	

Page	: 8 of 14
Work Order	: VA22B8970
Client	: The British Columbia Conservation Foundation
Project	: 1303015 ENOS

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier				
Total Metals (QCLot: 605128) - continued										
tungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010					
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010					
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050					
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030					
zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020					
Total Metals (QCLot: 612858)										
mercury, total	7439-97-6	E508	0.000005	mg/L	<0.000050					
Plant Pigments (QCLot: 604898)										
chlorophyll a	479-61-8	E870	0.01	µg/L	<0.010					

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Soil/Solid					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Recovery Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Physical Tests (QCLot: 614229)											
moisture		E144	0.25	%	50 %	99.9	90.0	110			
Polycyclic Aromatic Hydrocarbons (QCLo	t: 614227)										
acenaphthene	83-32-9	E641A	0.05	mg/kg	0.5 mg/kg	91.0	60.0	130			
acenaphthylene	208-96-8	E641A	0.05	mg/kg	0.5 mg/kg	91.3	60.0	130			
acridine	260-94-6	E641A	0.05	mg/kg	0.5 mg/kg	92.6	60.0	130			
anthracene	120-12-7	E641A	0.05	mg/kg	0.5 mg/kg	94.8	60.0	130			
benz(a)anthracene	56-55-3	E641A	0.05	mg/kg	0.5 mg/kg	92.9	60.0	130			
benzo(a)pyrene	50-32-8	E641A	0.05	mg/kg	0.5 mg/kg	93.0	60.0	130			
benzo(b+j)fluoranthene	n/a	E641A	0.05	mg/kg	0.5 mg/kg	91.6	60.0	130			
benzo(g,h,i)perylene	191-24-2	E641A	0.05	mg/kg	0.5 mg/kg	90.7	60.0	130			
benzo(k)fluoranthene	207-08-9	E641A	0.05	mg/kg	0.5 mg/kg	92.7	60.0	130			
chrysene	218-01-9	E641A	0.05	mg/kg	0.5 mg/kg	92.9	60.0	130			
dibenz(a,h)anthracene	53-70-3	E641A	0.05	mg/kg	0.5 mg/kg	91.1	60.0	130			
fluoranthene	206-44-0	E641A	0.05	mg/kg	0.5 mg/kg	92.5	60.0	130			
fluorene	86-73-7	E641A	0.05	mg/kg	0.5 mg/kg	93.8	60.0	130			
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.05	mg/kg	0.5 mg/kg	91.8	60.0	130			
methylnaphthalene, 1-	90-12-0	E641A	0.05	mg/kg	0.5 mg/kg	91.4	60.0	130			
methylnaphthalene, 2-	91-57-6	E641A	0.05	mg/kg	0.5 mg/kg	93.3	60.0	130			
naphthalene	91-20-3	E641A	0.05	mg/kg	0.5 mg/kg	91.9	50.0	130			
phenanthrene	85-01-8	E641A	0.05	mg/kg	0.5 mg/kg	93.6	60.0	130			
pyrene	129-00-0	E641A	0.05	mg/kg	0.5 mg/kg	93.8	60.0	130			
quinoline	91-22-5	E641A	0.05	mg/kg	0.5 mg/kg	89.1	60.0	130			

ub-Matrix: Water					Laboratory Control Sample (LCS) Report				
					Spike	Recovery (%)	Recovery (%) Recovery Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 604666)									
turbidity		E121	0.1	NTU	200 NTU	99.4	85.0	115	
Physical Tests (QCLot: 609891)									
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	91.0	85.0	115	
Anions and Nutrients (QCLot: 607710)									
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.03 mg/L	95.6	80.0	120	

Page: 10 of 14Work Order: VA22B8970Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Apply CAB Mumb More LON Math Recovery (%)	Sub-Matrix: Water		Laboratory Control Sample (LCS) Report							
Analyse CARMINE Method Unit Outsenant Weiner Locs Locs <thlocs< th=""> <thlocs< th=""> <thlocs< th=""><th></th><th></th><th></th><th></th><th></th><th colspan="5">Spike Recovery (%) Recovery Limits (%)</th></thlocs<></thlocs<></thlocs<>						Spike Recovery (%) Recovery Limits (%)				
Anone and Nutrients (OCL 6: 61413) 724 Mol 272	Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
pickpiptone, ball7723-4087249002mgl.n0.05 mgl.92.398.0097.2097.20Test <td< td=""><td>Anions and Nutrients (QCLot: 614138)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Anions and Nutrients (QCLot: 614138)									
Total Matein (CCL of: 60322) Control Mathematical Mathmathmatical Mathematical Mathematical Mathematical Mat	phosphorus, total	7723-14-0 E	E372-U	0.002	mg/L	0.05 mg/L	92.3	80.0	120	
Total Media (OCL.01: 60512) Unitary National (1994) Constrained (1994) <thconstrained (1994)<="" th=""> Constrained (1994)</thconstrained>										
atamiany, taid7420.06Fe00.003mglmgl, mgl,mgl, mgl,105mgl, mgl,106mgl, mgl,arener, taid7400.06Eco0.000mgl, mgl,1 mgl, mgl,1050.000102100beinut, taid7404.04Eco0.000mgl, mgl,1 mgl, mgl,1060.000100<	Total Metals (QCLot: 605128)									
aintency, taid749680Fac20001mpL1 mpL10380.0102barker, taid7449383Fac300001mpL0.22 mpL10680.010.0barker, taid7449431Fac30.0000mpL0.1 mpL10.480.010.0barker, taid7449431Fac30.00005mpL0.1 mpL10.480.010.0barner, taid7449434Fac30.00005mpL10.mL99.480.010.0barner, taid7449435Fac30.00005mpL10.mL99.480.010.0calarma, taid7449435Fac30.00005mpL0.05 mpL10.180.010.0calarma, taid7449435Fac30.00005mpL0.05 mpL0.05 mpL0.00010.0calarma, taid744943Fac30.00005mpL0.05 mpL0.0580.010.0<	aluminum, total	7429-90-5 F	E420	0.003	mg/L	2 mg/L	105	80.0	120	
airame, tairaiTAMBABEADMOMMPLIngLIngLMOM<	antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	103	80.0	120	
barun, totalYa404ZZMonmplMon <td>arsenic, total</td> <td>7440-38-2</td> <td>E420</td> <td>0.0001</td> <td>mg/L</td> <td>1 mg/L</td> <td>105</td> <td>80.0</td> <td>120</td> <td></td>	arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	105	80.0	120	
bendim, bail7440-17Fe20000002mgL01mgL<	barium, total	7440-39-3 E	E420	0.0001	mg/L	0.25 mg/L	105	80.0	120	
binum, totalTA404-96Ex2D00005mgL1 mgL1 mgL<	beryllium, total	7440-41-7 E	E420	0.00002	mg/L	0.1 mg/L	104	80.0	120	
boron, totalreadmant, totalreadmant, totalnumber <td>bismuth, total</td> <td>7440-69-9 E</td> <td>E420</td> <td>0.00005</td> <td>mg/L</td> <td>1 mg/L</td> <td>98.8</td> <td>80.0</td> <td>120</td> <td></td>	bismuth, total	7440-69-9 E	E420	0.00005	mg/L	1 mg/L	98.8	80.0	120	
carding, taidref 404-43F200.00000mgl,0.1 mgl,10080.0120catcam, taidY404-64F200.05mgl,0.05 mgl,0.0510480.0120chrom, triatY404-64F200.001mgl,0.25 mgl,10480.0120cobas, toidY404-64F200.001mgl,0.25 mgl,10480.0120cobas, toidY404-64F200.001mgl,0.25 mgl,10180.0120cobas, toidY404-64F200.001mgl,0.25 mgl,10180.0120cobas, toidY404-64F200.001mgl,0.5 mgl,10180.0120cobas, toidY404-64F200.001mgl,0.5 mgl,10480.0120cobas, toidY404-64F200.001mgl,0.5 mgl,10480.0120magnese, toidY404-74F200.001mgl,0.5 mgl,10480.0120magnese, toidY404-74F200.001mgl,0.5 mgl,10480.0120magnese, toidY404-74F200.000mgl,101mgl,101mgl,101mgl,100100magnese, toidY404-74F20F200.000mgl,101mgl,101mgl,100100 <t< td=""><td>boron, total</td><td>7440-42-8 E</td><td>E420</td><td>0.01</td><td>mg/L</td><td>1 mg/L</td><td>99.4</td><td>80.0</td><td>120</td><td></td></t<>	boron, total	7440-42-8 E	E420	0.01	mg/L	1 mg/L	99.4	80.0	120	
andiant7440-72F4200.05mglL90 mglL010180.0120casium, total7440-42F4200.0001mglL0.05 mgL60.880.0120cobalt, total7440-44F4200.0001mglL0.25 mgL86.880.0120coper, total7440-48F4200.0001mglL0.25 mgL86.880.0120tota, total749.942F4200.0005mglL0.5 mglL86.880.0120tota, total749.942F4200.0005mglL0.5 mglL86.580.0120magnesane, total749.945F4200.0001mglL0.25 mgL10480.0120magnesane, total749.945F4200.0001mglL0.25 mgL10480.0120magnesane, total749.945F4200.0005mglL0.25 mgL10480.0120molybdorun, total749.945F4200.0005mglL0.25 mgL10480.0120molybdorun, total749.945F4200.0005mglL101mgL10180.0120molybdorun, total740.945F4200.0005mglL101mgL10180.0120molybdorun, total740.945F4200.0005mglL101mgL10180.0120moly	cadmium, total	7440-43-9 B	E420	0.000005	mg/L	0.1 mg/L	100	80.0	120	
easim, tabi7440-42F4200.0001mgL0.05 mgL9.00	calcium, total	7440-70-2 E	E420	0.05	mg/L	50 mg/L	101	80.0	120	
chroniun, totalT440-478200.0000mg/L0.25 mg/L10480.0120cobat, total7440-488200.0000mg/L0.25 mg/L0.25 mg/L10180.00120cobat, total749.4988200.0000mg/L0.25 mg/L10180.00120inon, total749.4988200.0000mg/L0.5 mg/L10280.00120led, total749.4928200.001Mg/L0.5 mg/L10480.00120magnesium, total749.4938200.001Mg/L0.5 mg/L10480.00120moybeen, total749.4948200.001Mg/L0.5 mg/L10480.00120moybeen, total749.4948200.0000Mg/L0.5 mg/L10480.00120moybeen, total749.4948200.0000Mg/L0.5 mg/L101.0080.00120noble, total7440.408200.0000Mg/L0.5 mg/L100.00100.00100.00100.00100.00120.00noble, total7440.408200.0000Mg/L0.5 mg/L10.00100.00	cesium, total	7440-46-2 F	E420	0.00001	mg/L	0.05 mg/L	99.8	80.0	120	
cobalt of the form copendialFrequencyFrequencyResultRes	chromium, total	7440-47-3 E	E420	0.0005	mg/L	0.25 mg/L	104	80.0	120	
copper, total7440-6664200.0005mg/L0.25 mg/L10198.001209iron, total7439-8682400.0005Mg/L1.0 mg/L101288.00120tad, total7439-858200.0005Mg/L0.5 mg/L10.4080.00120tatium, total7439-858200.001Mg/L0.25 mg/L10.4180.00120magnases, total7439-858200.000Mg/L0.25 mg/L10.4180.00120molydehrun, total7439-858200.000Mg/L0.25 mg/L10.4180.00120molydehrun, total7439-858200.000Mg/L0.25 mg/L10.4180.00120plosphorus, total7439-858200.000Mg/L0.05 mg/L10.1280.00120plosphorus, total740-758200.000Mg/L10.10 mg/L10.2080.00120nubitum, total740-758200.000Mg/L0.1 mg/L10.280.00120silcon, total740-758200.000Mg/L10.1 mg/L10.280.00120silcon, total740-258200.000Mg/L10.1 mg/L10.280.00120silcon, total740-258200.000Mg/L10.1 mg/L10.080.00120	cobalt, total	7440-48-4 B	E420	0.0001	mg/L	0.25 mg/L	98.8	80.0	120	
icn, totalY439886E4200.01mgL1 mgL1 0280.01029.029.02lead, totalY439492E4200.0005mgL0.25 mgL9.0580.0120magnesut, totalY439484E4200.005mgL0.25 mgL9.0780.00120magnese, totalY439485E4200.005mgL0.25 mgL9.0780.00120molydonun, totalY439487E4200.005mgL0.5 mgL9.0780.00120molydonun, totalY439487E4200.005mgL0.5 mgL10.1080.00120plosphorus, totalY723-140E4200.005mgL10 mgL10.1080.00120ploshin, totalY44047E4200.005mgL11 mgL10.280.00120sideniun, totalY44047E4200.005mgL11 mgL10.280.00120sideniun, totalY44047E4200.000mgL11 mgL10.280.00120sideniun, totalY44047E4200.000mgL10 mgL10.880.00120sideniun, totalY44047E4200.0001mgL50 mgL10.080.00120sideniun, totalY44047E4200.0002mgL50 mgL10.080.00120.0sideniun, total	copper, total	7440-50-8 B	E420	0.0005	mg/L	0.25 mg/L	101	80.0	120	
nead, totalT439492E400.00005mg/L0.05mg/L96.586.0120magnestur, totalT439434E400.001mg/L0.25 mg/L10480.0120magnestur, totalT439456E400.0001mg/L0.25 mg/L90.780.00120molybdenur, totalT439467E400.0005Mg/L0.25 mg/L91.0480.00120molybdenur, totalT440420E400.0005Mg/L0.5 mg/L10.0280.00120plosphorus, totalT440420E400.005Mg/L10 mg/L10.0180.00120ploshasim, totalT440407E400.005Mg/L10 mg/L10.0280.00120ploshasim, totalT440479E400.005Mg/L10 mg/L10.0280.00120soltani, totalT440479E400.005Mg/L11 mg/L10.280.00120soltani, totalT440479E400.005Mg/L10 mg/L10.0280.00120soltani, totalT440479E400.005Mg/L11 mg/L10.280.00120soltani, totalT440479E400.0005Mg/L11 mg/L10.280.00120soltani, totalT440479E400.0001Mg/L10 mg/L10 mg/L10 mg/L10 mg/L10 mg/L<	iron, total	7439-89-6 F	E420	0.01	mg/L	1 mg/L	102	80.0	120	
intime index733998264200.001mgnL0.25 mg/L10480.0120magneset, total73998464200.005mg/L50 mg/L10480.0120maybasen, total73998564200.0005mg/L0.25 mg/L10480.0120nickel, total74002064200.0005mg/L0.25 mg/L10480.0120phosphorus, total74002064200.005mg/L0.5 mg/L10280.0120phosphorus, total74002064200.005mg/L10 mg/L10280.0120ubidum, total74409764200.005mg/L0.1 mg/L10280.0120ubidum, total74024764200.0005mg/L0.1 mg/L10280.0120selenum, total74024764200.0005mg/L10 mg/L10280.0120silon, total74024764200.0001mg/L10 mg/L10280.0120silon, total74024764200.0001mg/L0.5 mg/L10680.0120silon, total74024764200.0001mg/L0.5 mg/L10680.0120silon, total74024764200.0001mg/L65 mg/L10680.0120silon, total7	lead, total	7439-92-1 B	E420	0.00005	mg/L	0.5 mg/L	98.5	80.0	120	
magaesium, total7439-84E4200.005mg/L50 mg/L50 mg/L10480.0120magaese, total7439-85E4200.0001mg/L0.25 mg/L99.780.0120molybdenum, total7430-80E4200.0005mg/L0.5 mg/L0.5 mg/L101080.00120phosphorus, total7723-140E4200.05mg/L0.0 mg/L10 mg/L101080.00120potassium, total7743-140E4200.05mg/L50 mg/L10 mg/L10280.00120rubidim, total7440-027E4200.05mg/L0.1 mg/L10 mg/L10280.00120selenium, total7404-77E4200.0005mg/L0.1 mg/L10 mg/L10280.00120silcon, total7404-77E4200.0001mg/L10 mg/L10 mg/L10080.00120silcon, total7404-24E4200.0001mg/L10 mg/L10 mg/L1	lithium, total	7439-93-2 F	E420	0.001	mg/L	0.25 mg/L	104	80.0	120	
maganese, total7439-96E4200.0001mg/L0.25 mg/L99.780.0120molyddenum, total7439-987E4200.0005Mg/L0.25 mg/L10480.0120nicki, total7404020E4200.005Mg/L0.5 mg/L10280.0120phosphorus, total7723-140E4200.06Mg/L50 mg/L101980.0120rubidium, total740-07E4200.002Mg/L50 mg/L101980.0120rubidium, total740-07E4200.0005Mg/L101g/L10280.0120selenium, total740-07E4200.0005Mg/L10 mg/L101880.0120silor, total740-024E4200.0001Mg/L10 mg/L10880.0120silor, total740-23E4200.0001Mg/L0.1 mg/L94.980.0120silor, total740-24E4200.0001Mg/L0.5 mg/L10080.0120silor, total740-24E4200.0001Mg/L0.5 mg/L10080.0120silor, total740-24E4200.0001Mg/L0.5 mg/L10080.0120silor, total740-24E4200.0001Mg/L0.5 mg/L101080.0120silor, total </td <td>magnesium, total</td> <td>7439-95-4 B</td> <td>E420</td> <td>0.005</td> <td>mg/L</td> <td>50 mg/L</td> <td>104</td> <td>80.0</td> <td>120</td> <td></td>	magnesium, total	7439-95-4 B	E420	0.005	mg/L	50 mg/L	104	80.0	120	
molydenum, total7439-867E4200.00005mg/L0.25 mg/L10486.0120nickel, total7440-027E4200.0005mg/L0.5 mg/L10280.00120phosptorus, total7723-140E4200.05mg/L10 mg/L10280.00120potassium, total7440-047E4200.0002mg/L0.6 mg/L10280.00120selenium, total740-247E4200.0002mg/L11mg/L10280.00120selenium, total740-243E4200.0002mg/L11mg/L10280.00120silver, total740-245E4200.0001mg/L11mg/L10280.00120solutin, total740-245E4200.0001mg/L0.1 mg/L10880.00120solutin, total740-245E4200.0001mg/L0.1 mg/L10880.00120solutin, total740-245E4200.0001mg/L0.1 mg/L10880.00120solutin, total740-245E4200.0002mg/L0.0 mg/L10080.00120solutin, total740-245E4200.0001mg/L0.0 mg/L10080.00120totium, total740-245E4200.0002mg/L10.1 mg/L106.080.00120 </td <td>manganese, total</td> <td>7439-96-5 F</td> <td>E420</td> <td>0.0001</td> <td>mg/L</td> <td>0.25 mg/L</td> <td>99.7</td> <td>80.0</td> <td>120</td> <td></td>	manganese, total	7439-96-5 F	E420	0.0001	mg/L	0.25 mg/L	99.7	80.0	120	
nickel, total7440-020E4200.0005mg/L0.5 mg/L10280.00120potsphorus, total7723-140E4200.05mg/L10 mg/L10280.00120potassium, total7440-077E4200.05mg/L60 mg/L10980.00120selenium, total7440-177E4200.0005mg/L0.1 mg/L10280.00120selenium, total7440-24E4200.0005mg/L1 mg/L10280.00120silcon, total7440-24E4200.0005mg/L0.1 mg/L10880.00120solum, total7440-24E4200.0001mg/L0.1 mg/L94.9980.00120solum, total7440-24E4200.0002mg/L0.0 mg/L101080.00120solum, total7440-24E4200.0002mg/L0.1 mg/L101980.00120solum, total7440-24E4200.0002mg/L0.0 mg/L101080.00120solum, total7440-24E4200.0002mg/L0.0 mg/L101080.00120solum, total7440-24E4200.0002mg/L0.0 mg/L101080.00120solum, total740-24E4200.0001mg/L0.1 mg/L101680.00120 <tr< td=""><td>molybdenum, total</td><td>7439-98-7 B</td><td>E420</td><td>0.00005</td><td>mg/L</td><td>0.25 mg/L</td><td>104</td><td>80.0</td><td>120</td><td></td></tr<>	molybdenum, total	7439-98-7 B	E420	0.00005	mg/L	0.25 mg/L	104	80.0	120	
phosphorus, total7723-140E4200.05mg/L10 mg/L10280.0120potassium, total7440-097E4200.05mg/L50 mg/L10980.0120rubidium, total7440-177E4200.0002mg/L11 mg/L10280.0120selenium, total7782-482E4200.00005mg/L11 mg/L10280.00120silicon, total7440-243E4200.0001mg/L0.1 mg/L10880.00120silver, total7440-245E4200.0001mg/L0.1 mg/L94.9080.00120sodum, total7440-245E4200.0001mg/L50 mg/L101980.00120sodum, total7440-245E4200.0001mg/L50 mg/L101980.00120sodum, total7440-245E4200.0002mg/L0.25 mg/L10080.00120sodum, total740-245E4200.002mg/L0.25 mg/L10080.00120sodum, total740-245E4200.002mg/L50 mg/L101g/L98.6080.00120sodum, total740-245E4200.002mg/L0.1 mg/L99.0080.00120thrillin, total740-345E4200.001mg/L0.1 mg/L98.6080.00120<	nickel, total	7440-02-0 E	E420	0.0005	mg/L	0.5 mg/L	102	80.0	120	
potassium, total7440-09-7E4200.05mg/L50 mg/L10980.0120rubidium, total7440-17-7E4200.0002mg/L0.1 mg/L10280.0120selenium, total7782-49-2E4200.00005mg/L1 mg/L10280.0120silicon, total7440-21-3E4200.1mg/L10 mg/L10880.0120silver, total7440-22-4E4200.0001mg/L0.1 mg/L94.980.0120sodium, total7440-23-5E4200.0002mg/L0.1 mg/L94.980.0120sodium, total7440-24-6E4200.0002mg/L0.025 mg/L10980.0120solium, total7440-24-7E4200.0002mg/L0.25 mg/L10080.0120sulfur, total7440-24-7E4200.0002mg/L0.05 mg/L10180.0120sulfur, total7440-24-7E4200.0002mg/L0.05 mg/L10180.0120sulfur, total7440-24-7E4200.0002mg/L0.1 mg/L90.080.0120sulfur, total7440-24-7E4200.0001mg/L0.1 mg/L90.080.0120tholium, total7440-24-7E4200.0001mg/L0.1 mg/L90.080.0120	phosphorus, total	7723-14-0 E	E420	0.05	mg/L	10 mg/L	102	80.0	120	
rubidium, total7440-7784200.0002mg/L0.1 mg/L10280.0120selenium, total7782-49284200.00005mg/L1 mg/L10280.0120silicon, total7440-21384200.1mg/L10 mg/L10880.0120silver, total7440-22484200.0001mg/L0.1 mg/L94.980.0120sodium, total7440-23584200.050mg/L50 mg/L10980.0120storntum, total7440-24684200.0002mg/L0.25 mg/L10080.0120suffur, total7440-24684200.0002mg/L50 mg/L10580.0120suffur, total7440-24684200.0002mg/L0.1 mg/L98.680.0120totium, total7440-24684200.0001mg/L0.1 mg/L99.080.0120totium, total7440-24684200.0001mg/L0.1 mg/L99.080.0120totium, total7440-24684200.0001mg/L0.1 mg/L99.080.0120totium, total7440-24684200.0001mg/L0.1 mg/L99.080.0120totium, total7440-24664200.0001mg/L0.1 mg/L10180.0120<	potassium, total	7440-09-7 E	E420	0.05	mg/L	50 mg/L	109	80.0	120	
selenium, total7782492E4200.00005mg/L1 mg/L10280.0120silicon, total7440213E4200.1mg/L10 mg/L10880.0120silver, total7440224E4200.0001mg/L0.1 mg/L94.980.0120sodium, total7440245E4200.05mg/L50 mg/L10980.0120strontium, total7440246E4200.002mg/L0.25 mg/L10080.0120suffur, total7704349E4200.50mg/L50 mg/L10580.0120suffur, total7704349E4200.002mg/L0.1 mg/L99.080.0120totalum, total740426E4200.0001mg/L0.1 mg/L99.080.0120totalum, total740428E4200.0002mg/L0.1 mg/L99.080.0120totalum, total740428E4200.0001mg/L101mg/L99.080.0120torium, total740428E4200.0001mg/L0.1 mg/L99.080.0120torium, total740428E4200.0001mg/L0.1 mg/L99.080.0120torium, total740428E4200.0001mg/L0.1 mg/L10180.0120torium, total	rubidium, total	7440-17-7 E	E420	0.0002	mg/L	0.1 mg/L	102	80.0	120	
silion, total7440-21aE4200.1mg/L10 mg/L10888.0120silver, total7440-22aE4200.0001mg/L0.1 mg/L94.980.0120sodium, total7440-24aE4200.05mg/L50 mg/L10980.0120sufur, total7440-24aE4200.0002mg/L0.25 mg/L10080.0120sufur, total7704-34aE4200.0002mg/L50 mg/L10580.0120tellurium, total13494.00E4200.0002mg/L0.1 mg/L98.680.0120torium, total1494.00F402.000.0001mg/L0.1 mg/L99.0080.0120thrium, total7440-24E4200.0001mg/L0.1 mg/L99.0080.0120torium, total740-25E4200.0001mg/L0.1 mg/L99.0080.0120tin, total740-26E4200.001mg/L0.1 mg/L99.0080.0120tin, total740-27E4200.001mg/L0.1 mg/L91.0080.0120tin, total740-26E4200.001mg/L0.5 mg/L10180.0120tin, total740-35E4200.003mg/L0.5 mg/L10180.0120tin, total74	selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	102	80.0	120	
silver, total7440224E4200.0001mg/L0.1 mg/L94.980.0120sodium, total7440245E4200.05mg/L50 mg/L10980.0120sufur, total7704349E4200.002mg/L50 mg/L10080.0120tellurium, total1349480E4200.002mg/L0.1 mg/L98.680.0120tellurium, total1349480E4200.002mg/L0.1 mg/L99.080.0120thalium, total740426E4200.0001mg/L1 mg/L99.080.0120thorium, total740426E4200.001mg/L0.1 mg/L99.080.0120thorium, total740426E4200.001mg/L0.1 mg/L99.080.0120tin, total740426E4200.001mg/L0.5 mg/L10180.0120tin, total740436E4200.001mg/L0.5 mg/L10180.0120tin, total740436E4200.003mg/L0.5 mg/L10180.0120tin, total740436E4200.003mg/L0.5 mg/L10180.0120tin, total740436E4200.003mg/L0.5 mg/L10180.0120tin, total740436E4200.003<	silicon, total	7440-21-3 E	E420	0.1	mg/L	10 mg/L	108	80.0	120	
sodium, total7440-23sE4200.05mg/L50 mg/L10980.0120strontium, total7440-24-E4200.0002mg/L0.05 mg/L10580.0120tellurium, total1349-84-9E4200.0002mg/L0.1mg/L98.680.0120tellurium, total1349-84-9E4200.0001mg/L0.1mg/L99.080.0120thalium, total7440-24E4200.0001mg/L0.1mg/L99.080.0120thorium, total7440-24E4200.001mg/L0.1mg/L99.380.0120tin, total7440-24E4200.001mg/L0.5mg/L10180.0120tin, total7440-24E4200.003mg/L0.5mg/L10180.0120tin, total7440-24E4200.001mg/L0.25mg/L10280.0120tin, total7440-24E4200.003mg/L0.25mg/L10280.0120tin, total7440-24E4200.001mg/L0.1mg/L10280.0120tin, total7440-24E4200.003mg/L0.25mg/L10280.0120tin, total7440-24E4200.001mg/L0.1mg/L10080.0120tin, total7440-24 <t< td=""><td>silver, total</td><td>7440-22-4 E</td><td>E420</td><td>0.00001</td><td>mg/L</td><td>0.1 mg/L</td><td>94.9</td><td>80.0</td><td>120</td><td></td></t<>	silver, total	7440-22-4 E	E420	0.00001	mg/L	0.1 mg/L	94.9	80.0	120	
strontium, totalT440-24-E4200.0002mg/L0.25 mg/L10080.0120sulfur, totalT704-34-E4200.5mg/L0.1 mg/L98.680.0120tellurium, totalT440-28-E4200.0001mg/L1 mg/L99.080.0120thorium, totalT440-29-E4200.0001mg/L0.1 mg/L99.080.0120thorium, totalT440-29-E4200.001mg/L0.1 mg/L99.080.0120tin, totalT440-21-E4200.001mg/L0.1 mg/L99.080.0120tin, totalT440-21-E4200.001mg/L0.5 mg/L10180.0120tin, totalT440-21-E4200.003mg/L0.25 mg/L10280.0120tin, totalT440-31-E4200.001mg/L0.1 mg/L10080.0120tin, totalT440-31-E4200.003mg/L0.25 mg/L10280.0120tin, totalT440-31-E4200.001mg/L0.1 mg/L10080.0120tin, totalT440-31-E4200.001mg/L0.1 mg/L10080.0120tin, totalT440-31-E4200.001mg/L0.1 mg/L10080.0120	sodium, total	7440-23-5 H	E420	0.05	mg/L	50 mg/L	109	80.0	120	
sulfur, total7704-349E4200.5mg/L50 mg/L10588.0120tellurium, total13494-809E4200.0002mg/L0.1 mg/L99.080.0120thalium, total7440-280E4200.0001mg/L1 mg/L99.080.0120thorium, total7440-291E4200.0010mg/L0.1 mg/L93.880.0120tin, total7440-315E4200.001mg/L0.5 mg/L10180.0120tin, total7440-315E4200.003mg/L0.25 mg/L10280.0120tin, total7440-37E4200.001mg/L0.1 mg/L10080.0120	strontium, total	7440-24-6 B	E420	0.0002	mg/L	0.25 mg/L	100	80.0	120	
tellurium, total13494-80-E420 0.002 mg/L $0.1 mg/L$ 98.6 80.0 120 $$ thalium, total740-20-E420 0.0001 mg/L $1 mg/L$ 99.0 80.0 120 $$ thorium, total740-20-E420 0.001 mg/L $0.1 mg/L$ 93.8 80.0 120 $$ tin, total740-31-E420 0.001 mg/L $0.5 mg/L$ 101 80.0 120 $$ tinanum, total740-32-E420 0.003 mg/L $0.25 mg/L$ 102 80.0 120 $$ tungsten, total740-33-E420 0.001 mg/L $0.1 mg/L$ 100 80.0 120 $$	sulfur, total	7704-34-9 E	E420	0.5	mg/L	50 mg/L	105	80.0	120	
thallium, total 7440-28-9 E420 0.0001 mg/L 1 mg/L 99.0 80.0 120 thorium, total 7440-29-1 E420 0.0001 mg/L 0.1 mg/L 93.8 80.0 120 tin, total 7440-31-5 E420 0.0001 mg/L 0.5 mg/L 101 80.0 120 titanium, total 7440-32-6 E420 0.003 mg/L 0.25 mg/L 102 80.0 120 tutagsen, total 7440-33-7 E420 0.001 mg/L 0.1 mg/L 100 80.0 120	tellurium, total	13494-80-9 E	E420	0.0002	mg/L	0.1 mg/L	98.6	80.0	120	
thorium, total 7440-29-1 E420 0.001 mg/L 0.1 mg/L 93.8 80.0 120 tin, total 7440-31-5 E420 0.0001 mg/L 0.5 mg/L 101 80.0 120 titanium, total 7440-32-6 E420 0.003 mg/L 0.25 mg/L 102 80.0 120 tungsten, total 7440-33-7 E420 0.001 mg/L 0.1 mg/L 100 80.0 120	thallium, total	7440-28-0 E	E420	0.00001	mg/L	1 mg/L	99.0	80.0	120	
tin, total 7440-31-5 E420 0.001 mg/L 0.5 mg/L 101 80.0 120 titanium, total 7440-32-6 E420 0.003 mg/L 0.25 mg/L 102 80.0 120 tungsten, total 7440-33-7 E420 0.001 mg/L 0.1 mg/L 100 80.0 120	thorium, total	7440-29-1 E	E420	0.0001	mg/L	0.1 mg/L	93.8	80.0	120	
titanium, total 7440-32-6 E420 0.0003 mg/L 0.25 mg/L 102 80.0 120 tungsten, total 7440-33-7 E420 0.0001 mg/L 0.1 mg/L 100 80.0 120	tin, total	7440-31-5 E	E420	0.0001	mg/L	0.5 mg/L	101	80.0	120	
tungsten, total 7440-33-7 E420 0.0001 mg/L 0.1 mg/L 100 80.0 120	titanium, total	7440-32-6 B	E420	0.0003	mg/L	0.25 mg/L	102	80.0	120	
	tungsten, total	7440-33-7 E	E420	0.0001	mg/L	0.1 mg/L	100	80.0	120	

Page	: 11 of 14
Work Order	: VA22B8970
Client	: The British Columbia Conservation Foundation
Project	: 1303015 ENOS

Sub-Matrix: Water	ib-Matrix: Water					Laboratory Control Sample (LCS) Report				
					Spike	Recovery (%) Recovery Limits (%)		Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Total Metals (QCLot: 605128) - continued										
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	99.4	80.0	120		
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	105	80.0	120		
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	104	80.0	120		
zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	96.6	80.0	120		
Total Metals (QCLot: 612858)										
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	97.4	80.0	120		
Plant Pigments (QCLot: 604898)										
chlorophyll a	479-61-8	E870	0.01	μg/L	5 µg/L	90.2	80.0	120		

Page	: 12 of 14
Work Order	: VA22B8970
Client	: The British Columbia Conservation Foundation
Project	: 1303015 ENOS

Matrix Spike (MS) Report

Total Metals (QCLot: 605128)

SWMP03-5m

aluminum, total

antimony, total

arsenic, total

VA22B8970-002

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Soil/So	-Matrix: Soil/Solid					Matrix Spike (MS) Report						
					Sp	ike	Recovery (%)	Recovery	/ Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Polycyclic Arom	atic Hydrocarbons(QCLot: 614227)										
VA22B8970-008	SWMP06	acenaphthene	83-32-9	E641A	0.405 mg/kg	0.5 mg/kg	95.6	50.0	140			
		acenaphthylene	208-96-8	E641A	0.403 mg/kg	0.5 mg/kg	95.0	50.0	140			
		acridine	260-94-6	E641A	0.409 mg/kg	0.5 mg/kg	96.5	50.0	140			
		anthracene	120-12-7	E641A	0.424 mg/kg	0.5 mg/kg	100	50.0	140			
		benz(a)anthracene	56-55-3	E641A	0.410 mg/kg	0.5 mg/kg	96.7	50.0	140			
		benzo(a)pyrene	50-32-8	E641A	0.417 mg/kg	0.5 mg/kg	98.4	50.0	140			
		benzo(b+j)fluoranthene	n/a	E641A	0.409 mg/kg	0.5 mg/kg	96.4	50.0	140			
		benzo(g,h,i)perylene	191-24-2	E641A	0.405 mg/kg	0.5 mg/kg	95.5	50.0	140			
		benzo(k)fluoranthene	207-08-9	E641A	0.425 mg/kg	0.5 mg/kg	100	50.0	140			
		chrysene	218-01-9	E641A	0.410 mg/kg	0.5 mg/kg	96.8	50.0	140			
		dibenz(a,h)anthracene	53-70-3	E641A	0.406 mg/kg	0.5 mg/kg	95.9	50.0	140			
		fluoranthene	206-44-0	E641A	0.410 mg/kg	0.5 mg/kg	96.8	50.0	140			
		fluorene	86-73-7	E641A	0.416 mg/kg	0.5 mg/kg	98.1	50.0	140			
		indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.404 mg/kg	0.5 mg/kg	95.3	50.0	140			
		methylnaphthalene, 1-	90-12-0	E641A	0.404 mg/kg	0.5 mg/kg	95.3	50.0	140			
		methylnaphthalene, 2-	91-57-6	E641A	0.410 mg/kg	0.5 mg/kg	96.8	50.0	140			
		naphthalene	91-20-3	E641A	0.407 mg/kg	0.5 mg/kg	96.0	50.0	140			
		phenanthrene	85-01-8	E641A	0.418 mg/kg	0.5 mg/kg	98.7	50.0	140			
		pyrene	129-00-0	E641A	0.418 mg/kg	0.5 mg/kg	98.7	50.0	140			
		quinoline	91-22-5	E641A	0.390 mg/kg	0.5 mg/kg	92.0	50.0	140			
Sub-Matrix: Water							Matrix Spi	ke (MS) Report				
					Sp	ke	Recovery (%)	Recovery	/ Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Anions and Nutr	ients (QCLot: 60771	0)										
VA22B8970-001	SWMP03-1m	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0295 mg/L	0.03 mg/L	98.4	70.0	130			
Anions and Nutr	ients (QCLot: 61413	8)										
KS2203005-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0488 mg/L	0.05 mg/L	97.7	70.0	130			

E420

E420

E420

0.194 mg/L

0.0200 mg/L

0.0196 mg/L

0.2 mg/L

0.02 mg/L

0.02 mg/L

97.2

100

98.2

70.0

70.0

70.0

130

130

130

7429-90-5

7440-36-0

7440-38-2

Page: 13 of 14Work Order: VA22B8970Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Sub-Matrix: Water						Matrix Spike (MS) Report					
					Spi	ke	Recovery (%)	Recovery	Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Total Metals (QC	CLot: 605128) - conti	inued									
VA22B8970-002	SWMP03-5m	barium, total	7440-39-3	E420	0.0195 mg/L	0.02 mg/L	97.4	70.0	130		
		beryllium, total	7440-41-7	E420	0.0401 mg/L	0.04 mg/L	100	70.0	130		
		bismuth, total	7440-69-9	E420	0.00975 mg/L	0.01 mg/L	97.5	70.0	130		
		boron, total	7440-42-8	E420	0.100 mg/L	0.1 mg/L	100	70.0	130		
		cadmium, total	7440-43-9	E420	0.00394 mg/L	0.004 mg/L	98.4	70.0	130		
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130		
		cesium, total	7440-46-2	E420	0.0100 mg/L	0.01 mg/L	100	70.0	130		
		chromium, total	7440-47-3	E420	0.0383 mg/L	0.04 mg/L	95.7	70.0	130		
		cobalt, total	7440-48-4	E420	0.0193 mg/L	0.02 mg/L	96.3	70.0	130		
		copper, total	7440-50-8	E420	0.0193 mg/L	0.02 mg/L	96.3	70.0	130		
		iron, total	7439-89-6	E420	1.97 mg/L	2 mg/L	98.7	70.0	130		
		lead, total	7439-92-1	E420	0.0194 mg/L	0.02 mg/L	97.0	70.0	130		
		lithium, total	7439-93-2	E420	0.0988 mg/L	0.1 mg/L	98.8	70.0	130		
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130		
		manganese, total	7439-96-5	E420	ND mg/L	0.02 mg/L	ND	70.0	130		
		molybdenum, total	7439-98-7	E420	0.0204 mg/L	0.02 mg/L	102	70.0	130		
		nickel, total	7440-02-0	E420	0.0395 mg/L	0.04 mg/L	98.8	70.0	130		
		phosphorus, total	7723-14-0	E420	9.14 mg/L	10 mg/L	91.4	70.0	130		
		potassium, total	7440-09-7	E420	4.04 mg/L	4 mg/L	101	70.0	130		
		rubidium, total	7440-17-7	E420	0.0197 mg/L	0.02 mg/L	98.4	70.0	130		
		selenium, total	7782-49-2	E420	0.0414 mg/L	0.04 mg/L	103	70.0	130		
		silicon, total	7440-21-3	E420	9.97 mg/L	10 mg/L	99.7	70.0	130		
		silver, total	7440-22-4	E420	0.00389 mg/L	0.004 mg/L	97.3	70.0	130		
		sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130		
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130		
		sulfur, total	7704-34-9	E420	20.6 mg/L	20 mg/L	103	70.0	130		
		tellurium, total	13494-80-9	E420	0.0400 mg/L	0.04 mg/L	100	70.0	130		
		thallium, total	7440-28-0	E420	0.00374 mg/L	0.004 mg/L	93.5	70.0	130		
		thorium, total	7440-29-1	E420	0.0203 mg/L	0.02 mg/L	101	70.0	130		
		tin, total	7440-31-5	E420	0.0198 mg/L	0.02 mg/L	98.8	70.0	130		
		titanium, total	7440-32-6	E420	0.0389 mg/L	0.04 mg/L	97.3	70.0	130		
		tungsten, total	7440-33-7	E420	0.0195 mg/L	0.02 mg/L	97.4	70.0	130		
		uranium, total	7440-61-1	E420	0.00388 mg/L	0.004 mg/L	97.1	70.0	130		
		vanadium, total	7440-62-2	E420	0.0987 mg/L	0.1 mg/L	98.7	70.0	130		
		zinc, total	7440-66-6	E420	0.390 mg/L	0.4 mg/L	97.6	70.0	130		
		zirconium, total	7440-67-7	E420	0.0409 mg/L	0.04 mg/L	102	70.0	130		

Page	: 14 of 14
Work Order	: VA22B8970
Client	: The British Columbia Conservation Foundation
Project	: 1303015 ENOS

Sub-Matrix: Water					Matrix Spike (MS) Report						
					Spike Recovery (%)			Recovery			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Total Metals (QC	Lot: 612858)										
FJ2202192-002	Anonymous	mercury, total	7439-97-6	E508	0.0000976 mg/L	0.0001 mg/L	97.6	70.0	130		

Chain of Custody (COC) / Analytical Request Form

coc Number: 20 - 982084

Canada Toll Free: 1 800 668 9878

PO / AFE Job #: Street: Released by: TIRIAB ALS Lab Work Order # (ALS use only): ALS Account #/ Quote # VA Phone: Report To Are samples for human consumption/ use? Are samples taken from a Regulated DW Systemi Invoice To City/Province: Contact: Company: 缬 ß Contact: Company: (ALS use only) ostal Code: ALS Sample # 瀛 1 1 三部 89 Drinking Water (DW) Samples' (client use) all a 1 D ĭŝ 1.50 1303015 Ř Same as Report To Copy of Invoice with Report www.alsglobal.com 5821 - 5010 Company address below will appear on the final report bea, 5wmp03 -SMWP 03 SWMP 06-1m SWMP DU -SWMP 03 - 10m <u>swmp 03 - 5m</u> Manaino, Swmp 03 -Nub of ŝ S o Junny SHIPMENT RELEASE (client use) Contact and company name below will appear on the final report Conservation **Project Information** 40-2525 2022 BCCF SOND Sample Identification and/or Coordinates (This description will appear on the report) Date: 3 3 3 X Bornozel M and a ka ĭs □ R Yas Dupliate 100000 hunditun ext . 104 S S only phosphorous has pracevative, all others St. Ra Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) tE. coli Time: 1 Received by: Email 3 ALS Contact Select Invoice Distribution: Email 1 or Fax trodacts & back. com Select Report Format: Requisitioner: Major/Minor Code: Email 1 or Fax 🗸 Email 2 FE/Cost Center: Email 2 Select Distribution: □ Compare Results to Criteria on Report - provide details below if box checked Merge QC/QCI Reports with COA CYB D NO ocation: nied Mimenat **Oil and Gas Required Fields (client use)** INITIAL SHIPMENT RECEPTION (ALS use only) tinder of 5-00-22 lab pres. 1 tiltration (dd-mmm-yy) Date 7 : = Reports / Recipients 2 5 ÷ ÷ 2 Invoice Recipients 🕅 EMAIL 🗆 MAIL 🗆 FAX Date. (a prict when PQ# Mr. C. M. C. Wm Sampler: Routing Code: 13:46 13:15 13:00 13:50 13:30 11:55 1:35 54:11 (hh:mm) 50 Time D EDD (DIGITAL) TRIAB FAX I NA Sample Type water Sediment WINTER × × × × × plect. 1. Time: * Submission Comments Identified on Sample Receipt Notification: Same day [22] if received by 10am M-S - 200% rush surcharge. Addition may apply to rush requests on weekends, statutory holidays and non-routij Routine [R] if received by 3µm M+F - no surcharges apply 4 day [P4] if received by 3µm M+F - 20% rush surcharge minimum 3 day [P3] if received by 3µm M+F - 20% rush surcharge minimum 2 day [P2] if received by 3µm M+F - 50% rush surcharge minimum 1 day [E] if received by 3µm M+F - 100% rush surcharge minimum Cooling Method: NUMBER OF CONTAINERS Cooler Custody Seals Intact: < Date and Time Required for all E&P TATs: < < < Total Phosphoroes Received by: Ov thophosphite Total metals, < **Turnaround Time (TAT) Requested** Analysis Requind Andicate Filtered (F), Preserved (P) or Filtered and F For all tests with rush TATs requested, please con LER TEMPERATURES 'U and Hg, Hardness < Types TWA Sample Custody Seals Intact: SAMPLE RECEIPT DETAILS (ALS use onl ς TSS + Turbidity FINAL SHIPMENT RECEPTION (ALS use only < * Ċ Chlorophyll-a 3 E. <u>coli</u> ICE PACKS Date Ł PAH (sediment < < ×. Page ROZEN AUG 1 ` <u>o</u>t Telephone : +1 604 253 4168 Vancouver **Environmental Division** OULER TEMPERATURES Work Order Reference VA22B8970 NO 10 KB ŝ COOLING INITIATED GOa L L Kes SAMPLES ON HOLD EXTENDED STORAGE REQU 1 N/A £. SUSPECTED HAZARD (see na

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form. Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the while - report copy

WHITE - LABORATORY COPY

YELLOW - CLIENT COPY

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

CERTIFICATE OF ANALYSIS

Work Order	: VA22B9715	Page	: 1 of 4
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby BC Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	+1 604 253 4188
Project	: 1303015 ENOS	Date Samples Received	: 24-Aug-2022 09:15
PO	:	Date Analysis Commenced	: 24-Aug-2022
C-O-C number	: 20-982086	Issue Date	: 31-Aug-2022 14:46
Sampler	: TR/JD		-
Site	:		
Quote number	: VA2022BCCF1000001		
No. of samples received	: 6		
No. of samples analysed	: 6		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Brieanna Allen	Production/Validation Manager	Microbiology, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Woochan Song	Lab Analyst	Metals, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
mg/L	milligrams per litre
MPN/100mL	most probable number per 100 mL
NTU	nephelometric turbidity units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Water			C	lient sample ID	SWMP-03 1m	SWMP-03 5m	SWMP-03 10m	SWMP-03 1m	SWMP-04 1m
(Matrix: Water)								duplicate	
			Client samp	oling date / time	23-Aug-2022 11:45	23-Aug-2022 11:54	23-Aug-2022 11:59	23-Aug-2022 11:45	23-Aug-2022 12:20
Analyte	CAS Number	Method	LOR	Unit	VA22B9715-001	VA22B9715-002	VA22B9715-003	VA22B9715-004	VA22B9715-005
					Result	Result	Result	Result	Result
Physical Tests									
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	44.9	42.6	44.4	44.6	
solids, total suspended [TSS]		E160	3.0	mg/L		<3.0			
turbidity		E121	0.10	NTU		1.44			
Microbiological Tests									
coliforms, Escherichia coli [E. coli]		E010	1	MPN/100mL	1				9
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0290	0.0138	0.0403	0.0289	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00024	0.00018	0.00032	0.00024	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0186	0.0179	0.0242	0.0189	
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.022	0.020	0.019	0.023	
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.000050	<0.000050	<0.0000050	<0.000050	
calcium, total	7440-70-2	E420	0.050	mg/L	15.2	14.5	15.2	15.1	
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	0.000010	<0.000010	
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	0.00023	<0.00010	
copper, total	7440-50-8	E420	0.00050	mg/L	0.00176	0.00128	0.00113	0.00180	
iron, total	7439-89-6	E420	0.010	mg/L	0.071	0.090	3.58	0.071	
lead, total	7439-92-1	E420	0.000050	mg/L	0.000391	0.000485	0.000237	0.00118	
lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	
magnesium, total	7439-95-4	E420	0.0050	mg/L	1.68	1.56	1.56	1.68	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0350	0.0591	0.388	0.0352	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000219	0.000196	0.000120	0.000229	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	
potassium, total	7440-09-7	E420	0.050	mg/L	0.349	0.333	0.408	0.350	
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00052	0.00044	0.00056	0.00052	

Analytical Results

Sub-Matrix: Water		Cl	ient sample ID	SWMP-03 1m	SWMP-03 5m	SWMP-03 10m	SWMP-03 1m	SWMP-04 1m
(Matrix: Water)							duplicate	
	Client sampling date / time		23-Aug-2022 11:45	23-Aug-2022 11:54	23-Aug-2022 11:59	23-Aug-2022 11:45	23-Aug-2022 12:20	
Analyte CAS Number	Method	LOR	Unit	VA22B9715-001	VA22B9715-002	VA22B9715-003	VA22B9715-004	VA22B9715-005
				Result	Result	Result	Result	Result
Total Metals								
selenium, total 7782-49-2	E420	0.000050	mg/L	<0.000050	0.000078	0.000061	0.000075	
silicon, total 7440-21-3	E420	0.10	mg/L	2.76	2.82	4.25	2.66	
silver, total 7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, total 7440-23-5	E420	0.050	mg/L	7.64	7.18	7.15	7.65	
strontium, total 7440-24-6	E420	0.00020	mg/L	0.0498	0.0463	0.0498	0.0502	
sulfur, total 7704-34-9	E420	0.50	mg/L	1.34	1.47	<0.50	1.15	
tellurium, total 13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	
thallium, total 7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
thorium, total 7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
tin, total 7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, total 7440-32-6	E420	0.00030	mg/L	0.00045	<0.00030	0.00098	0.00050	
tungsten, total 7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
uranium, total 7440-61-1	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
vanadium, total 7440-62-2	E420	0.00050	mg/L	0.00077	<0.00050	0.00132	0.00065	
zinc, total 7440-66-6	E420	0.0030	mg/L	0.0058	<0.0030	<0.0030	0.0049	
zirconium, total 7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

Sub-Matrix: Water	Client sample IE					 	
(Matrix: Water)							
			Client samp	oling date / time	23-Aug-2022 12:40	 	
Analyte	CAS Number	Method	LOR	Unit	VA22B9715-006	 	
					Result	 	
Microbiological Tests							
coliforms, Escherichia coli [E. coli]		E010	1	MPN/100mL	7	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: VA22B9715	Page	: 1 of 6
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby, British Columbia Canada V5A 1W9
Telephone	250-390-2525	Telephone	: +1 604 253 4188
Project	: 1303015 ENOS	Date Samples Received	: 24-Aug-2022 09:15
PO	:	Issue Date	: 31-Aug-2022 14:46
C-O-C number	: 20-982086		ů –
Sampler	: TR/JD		
Site	:		
Quote number	: VA2022BCCF1000001		
No. of samples received	: 6		
No. of samples analysed	· 6		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- No Duplicate outliers occur.
- <u>No</u> Laboratory Control Sample (LCS) outliers occur
- <u>No</u> Matrix Spike outliers occur.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E١	aluation: 🗴 = 🛛	Holding time excee	edance ; 🔹	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	, Times	Eval
			Date	Rec	Actual			Rec	Actual	
Microbiological Tests : Total Coliforms and E. coli (Enzyme Substrate)										
Sterile HDPE (Sodium thiosulphate)										
SWMP-06 1m	E010	23-Aug-2022					24-Aug-2022	30 hrs	25 hrs	1
Microbiological Tests : Total Coliforms and E. coli (Enzyme Substrate)				1						
Sterile HDPE (Sodium thiosulphate)	5040									,
SWMP-03 1m	E010	23-Aug-2022					24-Aug-2022	30 hrs	26 hrs	*
Microbiological Tests : Total Coliforms and E. coli (Enzyme Substrate)										
Sterile HDPE (Sodium thiosulphate)	F010	23-Aug-2022					24-Aug-2022	30 hrs	26 hrs	1
	Lono	207 lug 2022					247/09/2022	00 113	201113	·
Physical Tests - TSS by Gravimetry										
HDPE										
SWMP-03 5m	E160	23-Aug-2022					29-Aug-2022	7 days	6 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
SWMP-03 5m	E121	23-Aug-2022					26-Aug-2022	3 days	3 days	1
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)	5500	00.4								,
SWMP-03 10m	E208	23-Aug-2022	30-Aug-2022				30-Aug-2022	28 days	7 days	*
Total Metals : Total Mercury in Water by CVAAS										
SWMP-03 1m	E508	23-Aug-2022	30-Aug-2022				30-Aug-2022	28 days	7 davs	1
	2000		55 / Mg 2022				55 / log 2022	20 44 70		

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🗸	<pre>/ = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)				Preparation Holding Times Eval		Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
SWMP-03 1m duplicate	E508	23-Aug-2022	30-Aug-2022				30-Aug-2022	28 days	7 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
SWMP-03 5m	E508	23-Aug-2022	30-Aug-2022				30-Aug-2022	28 days	7 days	1
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SWMP-03 10m	E420	23-Aug-2022	26-Aug-2022				26-Aug-2022	180	4 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS				1						
HDPE - total (lab preserved)	F 100									,
SWMP-03 1m	E420	23-Aug-2022	26-Aug-2022				26-Aug-2022	180	4 days	*
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)	E 400	00 4.47 0000	00.4				00.4		4 1	,
SWMP-03 1m duplicate	E420	23-Aug-2022	26-Aug-2022				26-Aug-2022	180	4 days	*
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)	E420	22 Aug 2022	26 Aug 2022				26 Aug 2022	100	1 days	
SVVIVI-03 311	E420	23-Aug-2022	20-Aug-2022				20-Aug-2022	180 dovo	4 uays	•
								uays		

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water	Evaluation: \star = QC frequency outside specification; \checkmark = QC frequency within specification.							
Quality Control Sample Type			Count		Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)								
Total Coliforms and E. coli (Enzyme Substrate)	E010	617080	2	20	10.0	10.0	✓	
Total Mercury in Water by CVAAS	E508	624750	1	20	5.0	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	619785	1	20	5.0	5.0	✓	
TSS by Gravimetry	E160	624063	1	20	5.0	5.0	✓	
Turbidity by Nephelometry	E121	620044	1	20	5.0	5.0	✓	
Laboratory Control Samples (LCS)								
Total Mercury in Water by CVAAS	E508	624750	1	20	5.0	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	619785	1	20	5.0	5.0	✓	
TSS by Gravimetry	E160	624063	1	20	5.0	5.0	✓	
Turbidity by Nephelometry	E121	620044	1	20	5.0	5.0	✓	
Method Blanks (MB)								
Total Coliforms and E. coli (Enzyme Substrate)	E010	617080	1	20	5.0	5.0	✓	
Total Mercury in Water by CVAAS	E508	624750	1	20	5.0	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	619785	1	20	5.0	5.0	\checkmark	
TSS by Gravimetry	E160	624063	1	20	5.0	5.0	✓	
Turbidity by Nephelometry	E121	620044	1	20	5.0	5.0	✓	
Matrix Spikes (MS)								
Total Mercury in Water by CVAAS	E508	624750	1	20	5.0	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	619785	1	20	5.0	5.0	\checkmark	

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Coliforms and E. coli (Enzyme Substrate)	E010 Vancouver -	Water	APHA 9223 (mod)	The enzyme substrate test simultaneously detects Total Coliforms and E. coli in a 100 mL sample after incubation at 35.0 ±0.5°C for either 18 or 24 hours (dependent on reagent used).
	Environmental			
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Vancouver -			
	Environmental			
TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Vancouver -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Environmental			brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
Total Metals in Water by CRC ICPMS	E420	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
	Vancouver -			
	Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
	Vancouver -			
	Environmental			
Hardness (Calculated) from Total Ca/Mg	EC100A	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	Vancouver -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Environmental			calculated from dissolved Calcium and Magnesium concentrations, because it is a
				property of water due to dissolved divalent cations. Hardness from total Ca/Mg is
				normally comparable to Dissolved Hardness in non-turbid waters.

QUALITY CONTROL REPORT

Work Order	VA22B9715	Page	: 1 of 10
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	:8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby, British Columbia Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	: +1 604 253 4188
Project	: 1303015 ENOS	Date Samples Received	: 24-Aug-2022 09:15
PO	:	Date Analysis Commenced	: 24-Aug-2022
C-O-C number	: 20-982086	Issue Date	: 31-Aug-2022 14:48
Sampler	: TR/JD		
Site	:		
Quote number	:VA2022BCCF1000001		
No. of samples received	: 6		
No. of samples analysed	: 6		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Brieanna Allen	Production/Validation Manager	Vancouver Microbiology, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Vancouver Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Vancouver Inorganics, Burnaby, British Columbia
Woochan Song	Lab Analyst	Vancouver Metals, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page: 3 of 10Work Order: VA22B9715Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 620044)										
KS2203105-001	Anonymous	turbidity		E121	0.10	NTU	0.39	0.41	0.02	Diff <2x LOR	
Physical Tests (QC	Lot: 624063)										
FJ2202286-001	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	9.3	9.3	0	Diff <2x LOR	
Microbiological Test	s (QC Lot: 617080)										
VA22B9679-011	Anonymous	coliforms, Escherichia coli [E. coli]		E010	1	MPN/100mL	<1	<1	0	Diff <2x LOR	
VA22B9693-001	Anonymous	coliforms, Escherichia coli [E. coli]		E010	1	MPN/100mL	<1	<1	0	Diff <2x LOR	
Total Metals (QC Lo	t: 619785)										
VA22B9715-001	SWMP-03 1m	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0290	0.0294	0.0004	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00024	0.00025	0.00001	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0186	0.0188	0.596%	20%	
		beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.022	0.024	0.001	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	15.2	16.2	6.04%	20%	
		cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00176	0.00256	0.00080	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	0.071	0.072	0.0005	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	0.000391	0.000395	0.000004	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	1.68	1.70	1.26%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.0350	0.0355	1.33%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000219	0.000230	0.000011	Diff <2x LOR	
		nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	0.349	0.357	0.008	Diff <2x LOR	
		rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00052	0.00056	0.00004	Diff <2x LOR	
		selenium, total	7782-49-2	E420	0.000050	mg/L	<0.000050	0.000063	0.000013	Diff <2x LOR	
	I			1	1	1 I			1		

Page: 4 of 10Work Order: VA22B9715Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	t: 619785) - continued										
VA22B9715-001	SWMP-03 1m	silicon, total	7440-21-3	E420	0.10	mg/L	2.76	2.71	2.00%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	7.64	7.74	1.24%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.0498	0.0525	5.28%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	1.34	1.53	0.19	Diff <2x LOR	
		tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	0.00045	0.00059	0.00014	Diff <2x LOR	
		tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00077	0.00069	0.00007	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0058	0.0064	0.0006	Diff <2x LOR	
		zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
Total Metals (QC Lo	t: 624750)										
FJ2202305-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water						
Analyte	CAS Number N	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 620044)						
turbidity	E	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 624063)						
solids, total suspended [TSS]	E	E160	3	mg/L	<3.0	
Microbiological Tests (QCLot: 617080)						
coliforms, Escherichia coli [E. coli]	E	E010	1	MPN/100mL	<1	
Total Metals (QCLot: 619785)						
aluminum, total	7429-90-5 E	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E	E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3 E	E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7 E	E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9 E	E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8 E	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E	E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2 E	E420	0.05	mg/L	<0.050	
cesium, total	7440-46-2 E	E420	0.00001	mg/L	<0.000010	
chromium, total	7440-47-3 E	E420	0.0005	mg/L	<0.00050	
cobalt, total	7440-48-4 E	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E	E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6 E	E420	0.01	mg/L	<0.010	
lead, total	7439-92-1 E	E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2 E	E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4 E	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5 E	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7 E	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E	E420	0.0005	mg/L	<0.00050	
phosphorus, total	7723-14-0 E	E420	0.05	mg/L	<0.050	
potassium, total	7440-09-7 E	E420	0.05	mg/L	<0.050	
rubidium, total	7440-17-7 E	E420	0.0002	mg/L	<0.00020	
selenium, total	7782-49-2 E	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4 E	E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5 E	E420	0.05	mg/L	<0.050	
I construction of the second se				-		

Page	: 6 of 10
Work Order	: VA22B9715
Client	: The British Columbia Conservation Foundation
Project	: 1303015 ENOS

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 619785) - continued	ł					
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
tellurium, total	13494-80-9	E420	0.0002	mg/L	<0.00020	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
thorium, total	7440-29-1	E420	0.0001	mg/L	<0.00010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
tungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	
Total Metals (QCLot: 624750)						
mercury, total	7439-97-6	E508	0.000005	mg/L	<0.000050	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 620044)									
turbidity		E121	0.1	NTU	200 NTU	98.0	85.0	115	
Physical Tests (QCLot: 624063)									
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	96.8	85.0	115	
Total Metals (QCLot: 619785)									
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	99.6	80.0	120	
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	102	80.0	120	
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	101	80.0	120	
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	97.7	80.0	120	
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	98.0	80.0	120	
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	94.8	80.0	120	
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	91.5	80.0	120	
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	99.8	80.0	120	
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	94.2	80.0	120	
cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	101	80.0	120	
chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	98.8	80.0	120	
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	97.1	80.0	120	
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	98.6	80.0	120	
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	103	80.0	120	
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	101	80.0	120	
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	97.6	80.0	120	
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	98.7	80.0	120	
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	97.9	80.0	120	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	99.3	80.0	120	
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	98.1	80.0	120	
phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	105	80.0	120	
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	104	80.0	120	
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	105	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	98.1	80.0	120	
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	103	80.0	120	
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	95.4	80.0	120	
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	105	80.0	120	
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	102	80.0	120	
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	92.6	80.0	120	
Page	: 8 of 10								
------------	--								
Work Order	: VA22B9715								
Client	: The British Columbia Conservation Foundation								
Project	: 1303015 ENOS								

Sub-Matrix: Water	p-Matrix: Water							Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)						
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier					
Total Metals (QCLot: 619785) - continued														
tellurium, total	13494-80-9	E420	0.0002	mg/L	0.1 mg/L	101	80.0	120						
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	101	80.0	120						
thorium, total	7440-29-1	E420	0.0001	mg/L	0.1 mg/L	92.2	80.0	120						
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	94.2	80.0	120						
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	92.9	80.0	120						
tungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	94.0	80.0	120						
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	99.6	80.0	120						
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	99.2	80.0	120						
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	94.1	80.0	120						
zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	95.8	80.0	120						
Total Metals (QCLot: 624750)														
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	106	80.0	120						

Page	: 9 of 10
Work Order	: VA22B9715
Client	: The British Columbia Conservation Foundation
Project	: 1303015 ENOS

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Total Metals (QC	Lot: 619785)									
VA22B9715-002	SWMP-03 5m	aluminum, total	7429-90-5	E420	0.190 mg/L	0.2 mg/L	95.2	70.0	130	
		antimony, total	7440-36-0	E420	0.0204 mg/L	0.02 mg/L	102	70.0	130	
		arsenic, total	7440-38-2	E420	0.0191 mg/L	0.02 mg/L	95.6	70.0	130	
		barium, total	7440-39-3	E420	0.0181 mg/L	0.02 mg/L	90.6	70.0	130	
		beryllium, total	7440-41-7	E420	0.0374 mg/L	0.04 mg/L	93.6	70.0	130	
		bismuth, total	7440-69-9	E420	0.00974 mg/L	0.01 mg/L	97.4	70.0	130	
		boron, total	7440-42-8	E420	0.093 mg/L	0.1 mg/L	93.0	70.0	130	
		cadmium, total	7440-43-9	E420	0.00388 mg/L	0.004 mg/L	97.0	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cesium, total	7440-46-2	E420	0.0104 mg/L	0.01 mg/L	104	70.0	130	
		chromium, total	7440-47-3	E420	0.0384 mg/L	0.04 mg/L	96.0	70.0	130	
		cobalt, total	7440-48-4	E420	0.0193 mg/L	0.02 mg/L	96.6	70.0	130	
		copper, total	7440-50-8	E420	0.0194 mg/L	0.02 mg/L	97.1	70.0	130	
		iron, total	7439-89-6	E420	1.87 mg/L	2 mg/L	93.5	70.0	130	
		lead, total	7439-92-1	E420	0.0195 mg/L	0.02 mg/L	97.6	70.0	130	
		lithium, total	7439-93-2	E420	0.0914 mg/L	0.1 mg/L	91.4	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0209 mg/L	0.02 mg/L	104	70.0	130	
		nickel, total	7440-02-0	E420	0.0388 mg/L	0.04 mg/L	97.1	70.0	130	
		phosphorus, total	7723-14-0	E420	9.52 mg/L	10 mg/L	95.2	70.0	130	
		potassium, total	7440-09-7	E420	3.98 mg/L	4 mg/L	99.5	70.0	130	
		rubidium, total	7440-17-7	E420	0.0198 mg/L	0.02 mg/L	99.2	70.0	130	
		selenium, total	7782-49-2	E420	0.0378 mg/L	0.04 mg/L	94.4	70.0	130	
		silicon, total	7440-21-3	E420	9.84 mg/L	10 mg/L	98.4	70.0	130	
		silver, total	7440-22-4	E420	0.00416 mg/L	0.004 mg/L	104	70.0	130	
		sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	20.2 mg/L	20 mg/L	101	70.0	130	
		tellurium, total	13494-80-9	E420	0.0390 mg/L	0.04 mg/L	97.4	70.0	130	
		thallium, total	7440-28-0	E420	0.00384 mg/L	0.004 mg/L	96.0	70.0	130	
		thorium, total	7440-29-1	E420	0.0204 mg/L	0.02 mg/L	102	70.0	130	
1		tin, total	7440-31-5	F420	0 0196 mg/l	0.02 mg/l	98.0	70.0	130	

Page: 10 of 10Work Order: VA22B9715Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Sub-Matrix: Water				Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Total Metals (QC	Lot: 619785) - continue	d									
VA22B9715-002	SWMP-03 5m	titanium, total	7440-32-6	E420	0.0382 mg/L	0.04 mg/L	95.5	70.0	130		
		tungsten, total	7440-33-7	E420	0.0192 mg/L	0.02 mg/L	96.1	70.0	130		
		uranium, total	7440-61-1	E420	0.00398 mg/L	0.004 mg/L	99.4	70.0	130		
		vanadium, total	7440-62-2	E420	0.0971 mg/L	0.1 mg/L	97.1	70.0	130		
		zinc, total	7440-66-6	E420	0.365 mg/L	0.4 mg/L	91.3	70.0	130		
		zirconium, total	7440-67-7	E420	0.0415 mg/L	0.04 mg/L	104	70.0	130		
Total Metals (QC	Lot: 624750)										
FJ2202305-002	Anonymous	mercury, total	7439-97-6	E508	0.0000950 mg/L	0.0001 mg/L	95.0	70.0	130		

Chain of Custody (COC) / Analytical Request Form

ALS <u>www.alsglobal.com</u>

Canada Toll Free: 1 800 668 9878

coc Number: 20 - 982086

Failure to complete all 1. If any water sample	Released by:			And samples for h	Are samples taker	Drinking		T. West	A	and Mart	Bart Contraction	and the second		(is		Y		5		ALS Sample # (ALS use only)	ALS Lab Wor	LSD:	PO / AFE:	Job # 130	ALS Account # /		Contact:	Company:		Invoice To	Postal Code:	City/Province:	Street:		Phone:	Company: Contact:	Report To
portions of this form may delay a sare taken from a Regulated Dri	AGE FOR ALS LOCATIONS	SHIPMENT REL			The segulated DW Syst	Water (DW) Samples (c								Swimp -	Sump-1	Swmp -	Swmp -	Swmp -	SWMP-	Sar (Tl	Order # (ALS use only)			BOIS ENG	Quote # VA 20	Project In			Copy of Invoice with Repo	Same as Report To	VAT OA	Nanaimo,	58×1-501#	Company address below w	1000 200-	AUN NA	Contact and compar
nalysis. Please fill in this f nking Water (DW) Syste		EASE (client use)			sm?	lent use)								D G G	24 11	03	03	03	03	nple Identification : his description will ap	JE 6			25	22 BCCF	formation					0	RC	BOX MAX	ill appear on the final r		(vanon	y name below will appear
orm LEGIBLY, By the use om, please submit using a	100 /22 13			e e	201 -71		Notes / S							2	3	I'm dek	lo m	Sm	Im	and/or Coordinates opear on the report)	J.				1000001	*			N	ON			Ra.	eport	194	toundation	r on the final report
e of this form the user acknon an Authorized DW COC fo	Received by:						pecify Limits for result									olicate					ALS Contact:	Location:	Requisitioner:	. Major/Minor Code:	AFE/Cost Center:		Email 2	Email 1 or Fax	Select Invoice D		Email 3	Email 2	Email 1 or Fax	Select Distributi	Compare Res	Select Report F	
rm.	E state	INITIAL SHIPMEN			att	Excel COC only)	evaluation by selecti							۶	4	2	2	۲	23-08	Date (dd-mmm-yy)	Shehas.					Oil and Gas Require	iner icr C	404000)istribution: 🕅	Invoice F		Ĺ	trodace	on: 📈 EMAIL	ults to Criteria on Report -	ormat: ML PDF	Reports /
the Terms and Condition		IT RECEPTION (AL					ng from drop-dawn b						10	1A:40	12:20	12 JU: 45	11:59	11:54	17:47	(hh:mm)	Sampler: TK			Routing Code:	PO#	ed Fields (client use	A CP. CW	(D) 10/0F		Recipients			3990		provide details below if b		Recipients
s as specified on the bac		S use only)			To		elow							r,	5	1	1.	2	Water	Sample Type	170.			_		U)	5		FAX				P. WW	AX			
x page of	Ime:			ooler C	ubmissi	ooling N									1				1	NUN	ABER	OF	: C	ON			ER	S			Date	⊥ mayap	_ Lane d		€ €	Routin	
the white - report of	Received b			INITIAL COOLE	on Comments I	Nethod:	Star of Star									<	<	<	¢	To1 To1	tal tal	m M	((<u></u>)	F <u>a</u> F [i	,15 Var	, dr		Indicat		Fo	and Time Requir	ply to rush requests	e) if received by 3 ay [E2] if received	[P2] if received by	[P3] if received by	[R] if received by	Turnaro
bpy.	B	ſ		R TEMPERA	dentified o	NONE	SA											<		T.	shid.	it.		17	~~~	,	_	e Filtered (F)		all tests with	ed for all Eá	on weekends	by 10am M-9	3pm M-F -	3pm M-F -	3pm M-F -	und Time (
	$\sum_{i=1}^{n}$	FINALS			n Sample		MPLE REC			-													/ 				_	, Preserved (rush TATs re	P TATS:	, statutory ho	- 200% rust	50% rush su	25% rush su	no surcharge	FAT) Requ
		HIPMENT	2.		Receipt No	HACE PACKS	EIPT OF												 									P) or Filtered	Analysis F	quested, pleas		idays and non	isurcharge milnin I surcharge, Ad	rcharge minin	rcharge minin	s apply	əsted
ζ	Ma	RECEPTIO	Ę	ample Cus	effication:	5 🖉 🗆 FR(AILS (ALS			í	, - I.	ļ	.		l.	I		L .	I	_	· ·							and Preserve	tequest	e contact your	đ	routine tests	ium ditional fees	Num		3	
7	22	N (ALS us	3	stody Seals		DZEN	; use only)										ļ	<	Wo	Envir								d (F/P) below		- AM to confirm	d-mmm-yy		, A		AFFIX J		
	61	e only)	及; (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	ntact: s	TR.					1	19. 19. 190			3				PN2	rk Orde	onmer										ı avallability.	hlymm ar	.44		n chel 🖗	ALS BARC	M	
~	<u>F</u>				B B	ING INIT.				i	4 200 41				S			ŭ	. Refe	ıtal C	LES	50	N	но	LD			┥			1Vpm	1		se only)	ODE LA		
イン	R	Acres		ร้ เชื่		IATED	1 N.C.				00		20					7	rence	Vivisi	DED	STC	RA	GE	RE	QU	IRE	Б						Ŋ.	BEL HE	ę	
5	Ro Balan			NA	X							-			_	_	(сл U		0n	СТЕГ	D HA		RD	(se	e n	otes	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				-	(s. 1	Ŕ	RE		4

CERTIFICATE OF ANALYSIS

Work Order	: VA22C0292	Page	: 1 of 5
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby BC Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	+1 604 253 4188
Project	: 1303015 ENOS	Date Samples Received	: 30-Aug-2022 09:20
PO	:	Date Analysis Commenced	: 30-Aug-2022
C-O-C number	: 20-982085	Issue Date	: 06-Sep-2022 11:39
Sampler	: TR/HT		
Site	:		
Quote number	: VA2022BCCF1000001		
No. of samples received	: 6		
No. of samples analysed	: 6		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Alex Thornton	Analyst	Metals, Burnaby, British Columbia
Brieanna Allen	Production/Validation Manager	Microbiology, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
mg/L	milligrams per litre
MPN/100mL	most probable number per 100 mL
NTU	nephelometric turbidity units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Water			C	lient sample ID	SWMP-03-1m	SWMP-03-5m	SWMP-03-5m	SWMP-03-10m	SWMP-04-1m
(Matrix: Water)							duplicate		
			Client samp	oling date / time	29-Aug-2022 11:17	29-Aug-2022 11:20	29-Aug-2022 11:20	29-Aug-2022 11:26	29-Aug-2022 11:53
Analyte	CAS Number	Method	LOR	Unit	VA22C0292-001	VA22C0292-002	VA22C0292-003	VA22C0292-004	VA22C0292-005
					Result	Result	Result	Result	Result
Physical Tests									
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	47.5	44.3	45.4	47.4	
solids, total suspended [TSS]		E160	3.0	mg/L		<3.0			
turbidity		E121	0.10	NTU		1.40			
Microbiological Tests									
coliforms, total		E010	1	MPN/100mL	75				261
coliforms, Escherichia coli [E. coli]		E010	1	MPN/100mL	1				8
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0293	0.0133	0.0156	0.0404	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00024	0.00018	0.00019	0.00035	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0188	0.0178	0.0184	0.0255	
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.025	0.021	0.021	0.019	
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
calcium, total	7440-70-2	E420	0.050	mg/L	16.2	15.1	15.5	16.3	
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	0.00025	
copper, total	7440-50-8	E420	0.00050	mg/L	0.00138	0.00270	0.00134	0.00284	
iron, total	7439-89-6	E420	0.010	mg/L	0.069	0.065	0.064	3.32	
lead, total	7439-92-1	E420	0.000050	mg/L	0.00174	0.000167	0.000810	0.000135	
lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	
magnesium, total	7439-95-4	E420	0.0050	mg/L	1.72	1.60	1.64	1.62	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0386	0.0556	0.0485	0.411	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000209	0.000191	0.000206	0.000121	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	
potassium, total	7440-09-7	E420	0.050	mg/L	0.366	0.332	0.342	0.406	

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	SWMP-03-1m	SWMP-03-5m	SWMP-03-5m	SWMP-03-10m	SWMP-04-1m
(Matrix: Water)							duplicate		
			Client samp	ling date / time	29-Aug-2022 11:17	29-Aug-2022 11:20	29-Aug-2022 11:20	29-Aug-2022 11:26	29-Aug-2022 11:53
Analyte	CAS Number	Method	LOR	Unit	VA22C0292-001	VA22C0292-002	VA22C0292-003	VA22C0292-004	VA22C0292-005
					Result	Result	Result	Result	Result
Total Metals									
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00055	0.00042	0.00042	0.00056	
selenium, total	7782-49-2	E420	0.000050	mg/L	0.000078	0.000059	0.000067	0.000100	
silicon, total	7440-21-3	E420	0.10	mg/L	2.85	2.97	3.02	4.30	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, total	7440-23-5	E420	0.050	mg/L	8.04	7.51	7.64	7.52	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.0501	0.0473	0.0489	0.0493	
sulfur, total	7704-34-9	E420	0.50	mg/L	1.53	1.68	1.64	0.64	
tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	0.00049	0.00031	<0.00030	0.00105	
tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
uranium, total	7440-61-1	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00055	<0.00050	<0.00050	0.00122	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0088	0.0047	0.0077	0.0049	
zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

Sub-Matrix: Water Client sample IL					SWMP-06-0.5m	 	
(Matrix: Water)							
	Client sampling date / time			29-Aug-2022 12:11	 	 	
Analyte	CAS Number	Method	LOR	Unit	VA22C0292-006	 	
					Result	 	
Microbiological Tests							
coliforms, total		E010	1	MPN/100mL	236	 	
coliforms, Escherichia coli [E. coli]		E010	1	MPN/100mL	6	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: VA22C0292	Page	: 1 of 6
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby, British Columbia Canada V5A 1W9
Telephone	250-390-2525	Telephone	: +1 604 253 4188
Project	: 1303015 ENOS	Date Samples Received	: 30-Aug-2022 09:20
PO	:	Issue Date	: 06-Sep-2022 11:39
C-O-C number	: 20-982085		
Sampler	: TR/HT		
Site	:		
Quote number	: VA2022BCCF1000001		
No. of samples received	: 6		
No. of samples analysed	· 6		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- No Duplicate outliers occur.
- <u>No</u> Laboratory Control Sample (LCS) outliers occur
- <u>No</u> Matrix Spike outliers occur.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: × =	Holding time excee	edance ; •	<pre>< = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Exti	raction / Pr	eparation			Analysis		
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Holding Times	
			Date	Rec	Actual			Rec	Actual	
Microbiological Tests : Total Coliforms and E. coli (Enzyme Substrate)										
Sterile HDPE (Sodium thiosulphate)										
SWMP-03-1m	E010	29-Aug-2022					30-Aug-2022	30 hrs	25 hrs	✓
Microbiological Tests : Total Coliforms and E. coli (Enzyme Substrate)										
Sterile HDPE (Sodium thiosulphate)										
SWMP-04-1m	E010	29-Aug-2022					30-Aug-2022	30 hrs	25 hrs	1
Microbiological Tests : Total Coliforms and E. coli (Enzyme Substrate)										
Sterile HDPE (Sodium thiosulphate)										
SWMP-06-0.5m	E010	29-Aug-2022					30-Aug-2022	30 hrs	25 hrs	~
Physical Tests : TSS by Gravimetry										
HDPE	- /									
SWMP-03-5m	E160	29-Aug-2022					04-Sep-2022	7 days	6 days	✓
Physical Tests : Turbidity by Nephelometry										
	F101	00 4					04 6 0000	0	0 dava	,
SWMP-03-5m	EIZI	29-Aug-2022					01-Sep-2022	3 days	3 days	*
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)	EEOO	20 Aug 2022	01 5 - 2022				01 5 an 2022	20 days	2 days	
SVVMP-03-10m	E306	29-Aug-2022	01-Sep-2022				01-Sep-2022	20 days	5 days	•
							I			
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved) SW/MP_03_1m	E508	29-Aug-2022	01-Sen-2022				01-Sep-2022	28 days	3 days	1
	LOOO	207 Wg-2022	01-00p-2022				01-000-2022	20 0033	Julys	·

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🗸	<pre>/ = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
SWMP-03-5m	E508	29-Aug-2022	01-Sep-2022				01-Sep-2022	28 days	3 days	1
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
SWMP-03-5m duplicate	E508	29-Aug-2022	01-Sep-2022				01-Sep-2022	28 days	3 days	1
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SWMP-03-10m	E420	29-Aug-2022	02-Sep-2022				02-Sep-2022	180	5 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SWMP-03-1m	E420	29-Aug-2022	02-Sep-2022				02-Sep-2022	180	5 days	1
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SWMP-03-5m	E420	29-Aug-2022	02-Sep-2022				02-Sep-2022	180	5 days	1
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SWMP-03-5m duplicate	E420	29-Aug-2022	02-Sep-2022				02-Sep-2022	180	5 days	1
								days		

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water	Evaluation: \star = QC frequency outside specification; \checkmark = QC frequency within specification.							
Quality Control Sample Type			Co	unt		Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)								
Total Coliforms and E. coli (Enzyme Substrate)	E010	625403	1	9	11.1	10.0	✓	
Total Mercury in Water by CVAAS	E508	629084	1	20	5.0	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	629673	1	20	5.0	5.0	✓	
TSS by Gravimetry	E160	632715	1	20	5.0	5.0	✓	
Turbidity by Nephelometry	E121	628946	1	20	5.0	5.0	✓	
Laboratory Control Samples (LCS)								
Total Mercury in Water by CVAAS	E508	629084	1	20	5.0	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	629673	1	20	5.0	5.0	✓	
TSS by Gravimetry	E160	632715	1	20	5.0	5.0	✓	
Turbidity by Nephelometry	E121	628946	1	20	5.0	5.0	✓	
Method Blanks (MB)								
Total Coliforms and E. coli (Enzyme Substrate)	E010	625403	1	9	11.1	5.0	✓	
Total Mercury in Water by CVAAS	E508	629084	1	20	5.0	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	629673	1	20	5.0	5.0	✓	
TSS by Gravimetry	E160	632715	1	20	5.0	5.0	✓	
Turbidity by Nephelometry	E121	628946	1	20	5.0	5.0	✓	
Matrix Spikes (MS)								
Total Mercury in Water by CVAAS	E508	629084	1	20	5.0	5.0	1	
Total Metals in Water by CRC ICPMS	E420	629673	1	20	5.0	5.0	✓	

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Coliforms and E. coli (Enzyme Substrate)	E010 Vancouver - Environmental	Water	APHA 9223 (mod)	The enzyme substrate test simultaneously detects Total Coliforms and E. coli in a 100 mL sample after incubation at $35.0 \pm 0.5^{\circ}$ C for either 18 or 24 hours (dependent on reagent used).
Turbidity by Nephelometry	E121 Vancouver - Environmental	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
TSS by Gravimetry	E160 Vancouver - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508 Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Hardness (Calculated) from Total Ca/Mg	EC100A Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations. Hardness from total Ca/Mg is normally comparable to Dissolved Hardness in non-turbid waters.

QUALITY CONTROL REPORT

VA22C0292	Page	: 1 of 10
: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
: Thea Rodgers	Account Manager	: Sneha Sansare
105 - 1885 Boxwood Rd	Address	:8081 Lougheed Highway
Nanaimo BC Canada V9S 5X9		Burnaby, British Columbia Canada V5A 1W9
: 250-390-2525	Telephone	: +1 604 253 4188
: 1303015 ENOS	Date Samples Received	: 30-Aug-2022 09:20
	Date Analysis Commenced	: 30-Aug-2022
: 20-982085	Issue Date	:06-Sep-2022 11:39
: TR/HT		
:		
: VA2022BCCF1000001		
: 6		
: 6		
	 VA22C0292 The British Columbia Conservation Foundation Thea Rodgers 105 - 1885 Boxwood Rd Nanaimo BC Canada V9S 5X9 250-390-2525 1303015 ENOS 20-982085 TR/HT VA2022BCCF1000001 6 6 	VA22C0292PageThe British Columbia Conservation FoundationLaboratoryThea RodgersAccount Manager105 - 1885 Boxwood RdAddressNanaimo BC Canada V9S 5X9Telephone250-390-2525Telephone1303015 ENOSDate Samples Received20-982085Issue DateTR/HTVA2022BCCF1000001666

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Alex Thornton	Analyst	Vancouver Metals, Burnaby, British Columbia
Brieanna Allen	Production/Validation Manager	Vancouver Microbiology, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Vancouver Inorganics, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page: 3 of 10Work Order: VA22C0292Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 628946)										
KS2203199-001	Anonymous	turbidity		E121	0.10	NTU	5.30	5.15	2.95%	15%	
Physical Tests (QC	Lot: 632715)										
VA22C0292-002	SWMP-03-5m	solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0	0	Diff <2x LOR	
Microbiological Test	ts (QC Lot: 625403)										
VA22C0276-002	Anonymous	coliforms, Escherichia coli [E. coli]		E010	1	MPN/100mL	<1	<1	0	Diff <2x LOR	
		coliforms, total		E010	1	MPN/100mL	<1	<1	0	Diff <2x LOR	
Total Metals (QC Lo	t: 629084)										
KS2203199-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Total Metals (QC Lo	t: 629673)										
VA22C0292-001	SWMP-03-1m	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0293	0.0297	0.0004	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00024	0.00023	0.000006	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0188	0.0185	1.22%	20%	
		beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.025	0.024	0.0002	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	16.2	15.8	2.79%	20%	
		cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00138	0.00133	0.00004	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	0.069	0.068	0.0007	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	0.00174	0.00173	0.0972%	20%	
		lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	1.72	1.69	1.78%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.0386	0.0373	3.44%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000209	0.000213	0.000004	Diff <2x LOR	
		nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	0.366	0.357	0.008	Diff <2x LOR	

Page: 4 of 10Work Order: VA22C0292Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Sub-Matrix: Water	-Matrix: Water					Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	ot: 629673) - continued										
VA22C0292-001	SWMP-03-1m	rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00055	0.00054	0.000010	Diff <2x LOR	
		selenium, total	7782-49-2	E420	0.000050	mg/L	0.000078	0.000051	0.000027	Diff <2x LOR	
		silicon, total	7440-21-3	E420	0.10	mg/L	2.85	2.71	5.15%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	8.04	7.91	1.69%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.0501	0.0501	0.136%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	1.53	1.38	0.15	Diff <2x LOR	
		tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	0.00049	0.00055	0.00006	Diff <2x LOR	
		tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00055	0.00054	0.00001	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0088	0.0086	0.0002	Diff <2x LOR	
		zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 628946)						
turbidity		E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 632715)						
solids, total suspended [TSS]		E160	3	mg/L	<3.0	
Microbiological Tests (QCLot: 625403)						
coliforms, Escherichia coli [E. coli]		E010	1	MPN/100mL	<1	
coliforms, total		E010	1	MPN/100mL	<1	
Total Metals (QCLot: 629084)						
mercury, total	7439-97-6	E508	0.000005	mg/L	<0.000050	
Total Metals (QCLot: 629673)						
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cesium, total	7440-46-2	E420	0.00001	mg/L	<0.000010	
chromium, total	7440-47-3	E420	0.0005	mg/L	<0.00050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6	E420	0.01	mg/L	<0.010	
lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
phosphorus, total	7723-14-0	E420	0.05	mg/L	<0.050	
potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
rubidium, total	7440-17-7	E420	0.0002	mg/L	<0.00020	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
I Contraction of the second					1 Contract of the second s	and the second se

Page	: 6 of 10
Work Order	: VA22C0292
Client	: The British Columbia Conservation Foundation
Project	: 1303015 ENOS

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 629673) - c	continued					
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
tellurium, total	13494-80-9	E420	0.0002	mg/L	<0.00020	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
thorium, total	7440-29-1	E420	0.0001	mg/L	<0.00010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
tungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	v Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Physical Tests (QCLot: 628946)											
turbidity		E121	0.1	NTU	200 NTU	97.5	85.0	115			
Physical Tests (QCLot: 632715)											
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	96.5	85.0	115			
Total Metals (QCLot: 629084)											
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	106	80.0	120			
Total Metals (QCLot: 629673)											
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	102	80.0	120			
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	102	80.0	120			
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	106	80.0	120			
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	102	80.0	120			
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	94.4	80.0	120			
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	97.4	80.0	120			
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	89.2	80.0	120			
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	106	80.0	120			
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	96.2	80.0	120			
cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	98.0	80.0	120			
chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	102	80.0	120			
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	104	80.0	120			
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	105	80.0	120			
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	97.8	80.0	120			
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	97.9	80.0	120			
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	98.7	80.0	120			
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	99.9	80.0	120			
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	105	80.0	120			
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	101	80.0	120			
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	105	80.0	120			
phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	109	80.0	120			
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	111	80.0	120			
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	106	80.0	120			
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	108	80.0	120			
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	110	80.0	120			
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	93.3	80.0	120			
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	106	80.0	120			

Page	: 8 of 10
Work Order	: VA22C0292
Client	: The British Columbia Conservation Foundation
Project	: 1303015 ENOS

Sub-Matrix: Water	-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Total Metals (QCLot: 629673) - continued												
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	101	80.0	120				
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	98.1	80.0	120				
tellurium, total	13494-80-9	E420	0.0002	mg/L	0.1 mg/L	92.0	80.0	120				
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	99.3	80.0	120				
thorium, total	7440-29-1	E420	0.0001	mg/L	0.1 mg/L	94.6	80.0	120				
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	94.7	80.0	120				
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	101	80.0	120				
tungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	94.3	80.0	120				
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	106	80.0	120				
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	106	80.0	120				
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	103	80.0	120				
zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	97.4	80.0	120				

Page: 9 of 10Work Order: VA22C0292Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water	atrix: Water					Matrix Spike (MS) Report									
					Spi	ke	Recovery (%)	Recovery	Limits (%)						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier					
Total Metals (QC	Lot: 629084)														
VA22C0181-002	Anonymous	mercury, total	7439-97-6	E508	0.0000937 mg/L	0.0001 mg/L	93.7	70.0	130						
Total Metals (QC	Lot: 629673)														
VA22C0292-002	SWMP-03-5m	aluminum, total	7429-90-5	E420	0.191 mg/L	0.2 mg/L	95.7	70.0	130						
		antimony, total	7440-36-0	E420	0.0195 mg/L	0.02 mg/L	97.3	70.0	130						
		arsenic, total	7440-38-2	E420	0.0204 mg/L	0.02 mg/L	102	70.0	130						
		barium, total	7440-39-3	E420	0.0189 mg/L	0.02 mg/L	94.4	70.0	130						
		beryllium, total	7440-41-7	E420	0.0373 mg/L	0.04 mg/L	93.2	70.0	130						
		bismuth, total	7440-69-9	E420	0.00992 mg/L	0.01 mg/L	99.2	70.0	130						
		boron, total	7440-42-8	E420	0.096 mg/L	0.1 mg/L	96.4	70.0	130						
		cadmium, total	7440-43-9	E420	0.00407 mg/L	0.004 mg/L	102	70.0	130						
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130						
		cesium, total	7440-46-2	E420	0.00979 mg/L	0.01 mg/L	97.9	70.0	130						
		chromium, total	7440-47-3	E420	0.0389 mg/L	0.04 mg/L	97.2	70.0	130						
		cobalt, total	7440-48-4	E420	0.0202 mg/L	0.02 mg/L	101	70.0	130						
		copper, total	7440-50-8	E420	0.0193 mg/L	0.02 mg/L	96.5	70.0	130						
		iron, total	7439-89-6	E420	1.91 mg/L	2 mg/L	95.6	70.0	130						
		lead, total	7439-92-1	E420	0.0193 mg/L	0.02 mg/L	96.6	70.0	130						
		lithium, total	7439-93-2	E420	0.0951 mg/L	0.1 mg/L	95.1	70.0	130						
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130						
		manganese, total	7439-96-5	E420	ND mg/L	0.02 mg/L	ND	70.0	130						
		molybdenum, total	7439-98-7	E420	0.0200 mg/L	0.02 mg/L	99.8	70.0	130						
		nickel, total	7440-02-0	E420	0.0408 mg/L	0.04 mg/L	102	70.0	130						
		phosphorus, total	7723-14-0	E420	9.20 mg/L	10 mg/L	92.0	70.0	130						
		potassium, total	7440-09-7	E420	4.11 mg/L	4 mg/L	103	70.0	130						
		rubidium, total	7440-17-7	E420	0.0194 mg/L	0.02 mg/L	96.9	70.0	130						
		selenium, total	7782-49-2	E420	0.0434 mg/L	0.04 mg/L	108	70.0	130						
		silicon, total	7440-21-3	E420	9.81 mg/L	10 mg/L	98.1	70.0	130						
		silver, total	7440-22-4	E420	0.00406 mg/L	0.004 mg/L	101	70.0	130						
		sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130						
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130						
		sulfur, total	7704-34-9	E420	18.9 mg/L	20 mg/L	94.7	70.0	130						
		tellurium, total	13494-80-9	E420	0.0378 mg/L	0.04 mg/L	94.5	70.0	130	·					

Page: 10 of 10Work Order: VA22C0292Client: The British Columbia Conservation FoundationProject: 1303015 ENOS

Sub-Matrix: Water					Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Total Metals (QC	Lot: 629673) - continue	d										
VA22C0292-002	SWMP-03-5m	thallium, total	7440-28-0	E420	0.00387 mg/L	0.004 mg/L	96.7	70.0	130			
		thorium, total	7440-29-1	E420	0.0212 mg/L	0.02 mg/L	106	70.0	130			
		tin, total	7440-31-5	E420	0.0189 mg/L	0.02 mg/L	94.3	70.0	130			
		titanium, total	7440-32-6	E420	0.0388 mg/L	0.04 mg/L	97.0	70.0	130			
		tungsten, total	7440-33-7	E420	0.0191 mg/L	0.02 mg/L	95.4	70.0	130			
		uranium, total	7440-61-1	E420	0.00397 mg/L	0.004 mg/L	99.3	70.0	130			
		vanadium, total	7440-62-2	E420	0.101 mg/L	0.1 mg/L	101	70.0	130			
		zinc, total	7440-66-6	E420	0.400 mg/L	0.4 mg/L	100	70.0	130			
		zirconium, total	7440-67-7	E420	0.0402 mg/L	0.04 mg/L	100	70.0	130			

COC Number: 20 - 982085

of

.....

ς.

AUG 2020 FRONT

Canada Toll Free: 1 800 668 9878

Page

Report To	Contact and company name below will appear on the final report	<u> </u>	Reports / Recipients Turnaround Time (TAT) Requested						En	vironm	ental	Divis	sion					
Company	Dr ancertabain Frinket	Select Report P	format:		D (DIGITAL)	1.	outline (D)	if received	by Rom M-F	- m surchs	rdes anniv		Va	ncouve	אין איז פאי	foron	~	
Contact:	The Rodan	Merne QC/Q	CI Reports with COA	λαζγες ΓΊΝΟ			l dav [P4] i	f received	by 3cm M-F-	20% rush	surcharge r	ninimum				N C	ົດໃ) .
Phone:	12631 390 - 2525 Port 104	Compare Res	suits to Criteria on Report - p	rovide details below if	box checked		day [P3]	if received	iby 3pm M-F	- 25% rush	surcharge	minimun		V A2	20	UZ	.92	-
	Company address below will appear on the final report	Select Distribut	ion: 🔀 EMAIL	MAIL D	FAX	□ 2	day [P2]	if received	by 3pm M-F	- 50% rush	surcharge	minimum				RALE -		
Street:	#105-1885 Ronward Rd	· Email 1 or Eax	tindage	- @locch	- (0)		day[E]if annadau(⊆	received t	y3pm M-F∼ vedbou10ann N	100% rush 15 300%	surcharge				T No A	01.4		· ·
City/Province:	N/maimo, BC	Email 2	II and the		1-0.		nay apply to	rush requi	ests on weeker	ds, statutory	holidays an	d non-rou			: RES			
Postal Code:	V9T DAL	Email 3	· · · · · · · · · · · · · · · · · · ·			· -	Date and	Time Red	uired for all	E&P TATS:		t		- E U 67	131	466-	/ 11	
Invoice To	Same as Report To		Invoice Re	ecipients			For all tests with rush TATs requested, please co				please co			6.033		,	1	
	Copy of Invoice with Report 📈 YES 🔲 NO	Select Invoice I	Distribution: 🔀 🗗		FAX			Analysis Rec				sis Req						•
Company:		Email 1 or Fax	mail 1 or Fax tribler 15 Charf. com			ŝ		Ind	icate Filtered	(F), Preservi	d (P) or Fi	tered and	Tel	lephone : +	1 604 25	3 4188		1
Contact:		Email 2	nail 2 Nirrerick C bacf. com			16						\Box	` <u> </u>			rr	-=T	<u>ज</u> ्
	Project Information		Oil and Gas Require	d Fields (client us	se)	ן ₹ן				,'n							<u> i</u>	e l
ALS Account #	Quote # VA 2022 BCCF 100 00	AFE/Cost Center:		PO#	·]È				D D						121	2	s.
Job #: 131	03015 ANOS	Major/Minor Code:		Routing Code:		ð	8	10		ve						오	Ŭ.	¥
PO / AFE:		Requisitioner:] <mark>(</mark>)	1			<u> </u>						Z	R I	Ř
LSD:		Location				ō	18	5	<u>د،</u>								ST	Ξ
ALS Lab Wor	k Order # (ALS use only):	ALS Contact:	Sneha	Sampler: TR	UHT	BER	6	dhe	ે	5						PLES	NDED	ECTE
ALS Sample #	Sample Identification and/or Coordinate	5	Date	Time/OD	Termala Turna	1₹	1.0	30	L.	$ \mathcal{X} $						Σ	Ē	SP
(ALS use only)	(This description will appear on the report	ł	(dd-mmm-yy)	(hh:mm	n pampie Type	Ī	12			,			· · · ·			ŝ	<u> </u>	S.
	SWMP-03 - Im		29-08-22	11:17	Water		1				,							
1	SWMP-02-5m			11:20	4					$\overline{}$			·			\square		
h de est	Swmp-03-5m Auglicate		4	1.20	1											\square	T	
	SILVAR -03- 10m			11:26	<u>.</u>	1		1										
196	Savo D all L	·····		11.63	·····		╞─╨			1				+	+	\vdash	$ \rightarrow $	-
	SVN1-04-IM	· · · ·				+	+-+									┢──╉		
tu An di	sum-06-0.5m			12,11			+										-+	-
h indip whe																		
C. A. Mr.																		
and the second		- 10 E I BIB							· 					++		\vdash		
Maria Maria							+	_						+-+		\vdash		
	Notes /	Specify Limits for resul	t evaluation by selectin	g from drop-down	below	The s			 MS	AMPLE F	ECEIPT	DETAILS	S (ALS us	e only) 🎆	, Allas	- 28 A	usifik.	
Drinkin	g Water (DW) Samples' (client use)		(Excel COC only)	·		Cool	ing Meth	od:	NONE	TCE	ICE ICE	PACKS 🤾 [FROZEN		COOLING	INITIA	TÊD	
Are samples take	n from a Regulated DW System?					Subr	nission (Commen	ts identified	l on Samp	le Recei	t Notifica	tion: 🗽 - 🛉	YE	5 🍂 🗖	NO 5	1. 	1999 -
	s ¤ ∾ Non ĩ	NM.				Cool	er Custo	dy Seals	intact:	🗌 YE	5 🔲 N/A	Samp	le Custod	y Seals Inte	act:	T YES		√A
Are samples for h	numan consumption/ use?					1988 A.	NI NI	ITIAL COO	DLER TEMPE	RATURES	Cise	an an	FINA	L'COOLER T	EMPERATU	JRES °C	Berne a	- 292 - 20
Y	ES 🛕 NO					395	- 47- 	- Ar					*	4		d.	دبسيا	-0
Pologoad burg	SHIPMENT RELEASE (client use)		INITIAL SHIPMEN	RECEPTION (A	LS use only) 🏭			NER C	1 h	* FINAL	SHIPMI	NT RECI	EPTION (/	ALS use or	<u>1ly) 홍종 -</u>	Time:	* et 15.	1988
neleased by:	IK. 29/08/2022	310	L. A. A.		a de de	Hme	Alta	Receive	u by:		6) and	2.2	distant.		20a	

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY YELLOW - CLIENT COPY

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report capy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS										
Work Order	: VA22C8351	Page	: 1 of 2							
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental							
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare							
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway							
	Nanaimo BC Canada V9S 5X9		Burnaby BC Canada V5A 1W9							
Telephone	: 250-390-2525	Telephone	: +1 604 253 4188							
Project	: 1303015 ENOS	Date Samples Received	: 22-Nov-2022 09:20							
PO	:	Date Analysis Commenced	: 23-Nov-2022							
C-O-C number	: 20-982087	Issue Date	: 29-Nov-2022 17:18							
Sampler	: TR									
Site	:									
Quote number	: VA2022BCCF1000001									
No. of samples received	: 4									
No. of samples analysed	: 4									

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
µg/L	micrograms per litre
mg/L	milligrams per litre

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Water			Cl	ient sample ID	SWMP03-1m	SWMP03-5m	SWMP03-10m	SWMP03-duplic	
(Matrix: Water)								ate 10m	
Client sampling date / time						21-Nov-2022 12:50	21-Nov-2022 12:40	21-Nov-2022 12:46	
Analyte	CAS Number	Method	LOR	Unit	VA22C8351-001	VA22C8351-002	VA22C8351-003	VA22C8351-004	
					Result	Result	Result	Result	
Anions and Nutrients									
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0141	0.0117	0.0126	0.0133	
Plant Pigments									
chlorophyll a	479-61-8	E870	0.010	µg/L	16.6	14.0	12.9	12.4	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	:VA22C8351	Page	: 1 of 6
Client	The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby, British Columbia Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	: +1 604 253 4188
Project	: 1303015 ENOS	Date Samples Received	: 22-Nov-2022 09:20
PO	:	Issue Date	: 29-Nov-2022 17:21
C-O-C number	: 20-982087		
Sampler	: TR		
Site			
Quote number	: VA2022BCCF1000001		
No. of samples received	:4		
No. of samples analysed	:4		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches) <u>No</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples • No Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E١	aluation: × =	Holding time exce	edance ; 🔹	<pre>< = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	eparation		Analysis				
Container / Client Sample ID(s)			Preparation	on Holding Times		Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE	5070 11									
SWMP03-10m	E378-U	21-Nov-2022	23-Nov-2022				23-Nov-2022	3 days	2 days	*
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vei 0.001									
HDPE										
SWMP03-1m	E378-U	21-Nov-2022	23-Nov-2022				23-Nov-2022	3 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE SW/MD03.5m	E378-U	21-Nov-2022	23-Nov-2022				23-Nov-2022	3 dave	2 days	1
Gwwwi Go-oni	2010 0		20-1107-2022				20-1101-2022	0 days	2 days	
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
· · · · · · · · · · · · · · · · · · ·										
HDPE										
SWMP03-duplicate 10m	E378-U	21-Nov-2022	23-Nov-2022				23-Nov-2022	3 days	2 days	~
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)	E372-U	21-Nov-2022	27-Nov-2022				29-Nov-2022	28 days	8 days	1
	2072-0	21-1101-2022	21-100-2022				20-1101-2022	20 00 33	0 days	, i
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/l.)										
Amber glass total (sulfuric acid)										
SWMP03-1m	E372-U	21-Nov-2022	27-Nov-2022				29-Nov-2022	28 days	8 days	1

Matrix: Water Evaluation: × = Holding time exceedance ; ✓ = Within Holding Time										
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation Holding Times Eval		Eval	Analysis Date	Holding	Times	Eval	
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
SWMP03-5m	E372-U	21-Nov-2022	27-Nov-2022				29-Nov-2022	28 days	8 days	1
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
SWMP03-duplicate 10m	E372-U	21-Nov-2022	27-Nov-2022				29-Nov-2022	28 days	8 days	4
Plant Pigments : Chlorophyll-a by Fluorometry										
Opaque HDPE										
SWMP03-10m	E870	21-Nov-2022	23-Nov-2022	2 days	2 days	1	23-Nov-2022	672 hrs	0 days	~
Plant Pigments : Chlorophyll-a by Fluorometry										
Opaque HDPE										
SWMP03-1m	E870	21-Nov-2022	23-Nov-2022	2 days	2 days	✓	23-Nov-2022	672 hrs	0 days	✓
	L									
Plant Pigments : Chlorophyll-a by Fluorometry				1						
Opaque HDPE	5070		00 NL 0000			,		070 1	<u>.</u>	,
SWMP03-5m	E870	21-Nov-2022	23-Nov-2022	2 days	2 days	•	23-Nov-2022	672 hrs	0 days	•
Plant Pigments : Chlorophyll-a by Fluorometry										
Opaque HDPE	F 970	21 Nov 2022	00 Nov 0000	0 days	0 days		00 Nov 0000	070 hr	0 days	
SWMP03-duplicate 10m	E870	∠1-Nov-2022	23-Nov-2022	2 days	2 days	*	23-Nov-2022	672 hrs	U days	*
	1									

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water Evaluation: × = QC frequency outside specification; ✓ = QC frequency within specif								
Quality Control Sample Type			Co	unt	Frequency (%)			
Analytical Methods	Method	QC Lot #	QC Lot # QC		Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)								
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	753890	1	10	10.0	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	759320	1	18	5.5	5.0	✓	
Laboratory Control Samples (LCS)								
Chlorophyll-a by Fluorometry	E870	754174	1	12	8.3	5.0	✓	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	753890	1	10	10.0	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	759320	1	18	5.5	5.0	✓	
Method Blanks (MB)								
Chlorophyll-a by Fluorometry	E870	754174	1	12	8.3	5.0	✓	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	753890	1	10	10.0	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	759320	1	18	5.5	5.0	✓	
Matrix Spikes (MS)								
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	753890	1	10	10.0	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	759320	1	18	5.5	5.0	✓	

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Phosphorus by Colourimetry (0.002	E372-U	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated
mg/L)				persulfate digestion of the sample.
	Vancouver -			
	Environmental			
Dissolved Orthophosphate by Colourimetry	E378-U	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab
(Ultra Trace Level 0.001 mg/L)				or field filtered through a 0.45 micron membrane filter.
	Vancouver -			
	Environmental			Field filtration is recommended to ensure test results represent conditions at time of
				sampling.
Chlorophyll-a by Fluorometry	E870	Water	EPA 445.0 (mod)	Chlorophyll a is determined by solvent extraction followed with analysis by fluorometry
				using the non-acidification procedure. This method is not subject to interferences from
	Vancouver -			chlorophyll b.
	Environmental			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
	Environmental			
Chlorophyll-a Extraction	EP870	Water	EPA 445.0 (mod)	Chlorophyll-a solvent extraction.
	Vancouver -			
	Environmental			

ALS Canada Ltd.

QUALITY CONTROL REPORT Work Order Page :VA22C8351 : 1 of 4 Client : The British Columbia Conservation Foundation Laboratory : Vancouver - Environmental Account Manager : Sneha Sansare Contact : Thea Rodgers Address Address : 105 - 1885 Boxwood Rd :8081 Lougheed Highway Nanaimo BC Canada V9S 5X9 Burnaby, British Columbia Canada V5A 1W9 Telephone Telephone :+1 604 253 4188 Project : 1303015 ENOS Date Samples Received : 22-Nov-2022 09:20 PO Date Analysis Commenced :23-Nov-2022 :----C-O-C number Issue Date :29-Nov-2022 17:19 :20-982087 Sampler : TR 250-390-2525 Site · ____ Quote number :VA2022BCCF1000001 No. of samples received :4 No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Lindsay Gung	Supervisor - Water Chemistry	Vancouver Inorganics, Burnaby, British Columbia
Tracy Harley	Supervisor - Water Quality Instrumentation	Vancouver Inorganics, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot. CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrients (QC Lot: 753890)											
VA22C8293-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrients	Anions and Nutrients (QC Lot: 759320)										
KS2204492-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0200	mg/L	0.204	0.231	12.4%	20%	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water								
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier		
Anions and Nutrients (QCLot: 753890)								
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	<0.0010			
Anions and Nutrients (QCLot: 759320)								
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020			
Plant Pigments (QCLot: 754174)								
chlorophyll a	479-61-8	E870	0.01	µg/L	<0.010			

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Co	ontrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 753890)									
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.03 mg/L	98.3	80.0	120	
Anions and Nutrients (QCLot: 759320)									
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.05 mg/L	92.3	80.0	120	
Plant Pigments (QCLot: 754174)									
chlorophyll a	479-61-8	E870	0.01	μg/L	5 µg/L	91.4	80.0	120	

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutrie	ents (QCLot: 753890)									
VA22C8351-001	SWMP03-1m	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0287 mg/L	0.03 mg/L	95.7	70.0	130	
Anions and Nutrients (QCLot: 759320)										
KS2204492-002	Anonymous	phosphorus, total	7723-14-0	E372-U	4.08 mg/L	5 mg/L	81.6	70.0	130	

Page	:
Work Order	:
Client	:
Project	:

4 of 4 VA22C8351 The British Columbia Conservation Foundation 1303015 ENOS

	2/12/	Time: Received D & Dale Dale V - CLIENT COPY V - CLIENT COPY V - CLIENT COPY	Date:	Received by WH	JOU 21 122 Time IPLING INFORMATION See Rif in this form LEGIBLY. By the use of r rDWN System, neese submit using an	AGE FOR ALS LOCATIONS AND SAM portions of this form may delay analysis. Pleases to the taken from a Requisited Drinking Water	Released by: REFER TO BACK Failure to complete al
Mark Mark Maladada Same To Prove To Mark Mark Same To Mark Mark Mark Same To Mark Mark	園	FINAL SHIPMENT REC	T RECEPTION (ALS use only)	INITIAL SHIPMEN	ient use)	SHIPMENT RELEASE (cliv	
New Bandballow New Bandbalow		NITTAL COOLER TEMPERATURES °C	-	18 hour 17 possible.	w[j	MO	Are samples for h
Image: Inclusion: Consist: Converting on the inclusion: Mage: Inclusion: <	R B	Submission Comments identified on Sample Receipt Notific Cooler Custody Seals Intact: 30% 46 . Yes 10 . Yes	Mare Hilter	d Chlorophyll-a,	untiter	NO	Are samples taker
Image: The constraint of the provide of the provi		Cooling Method:	g from drop-down below	city Limits for result evaluation by selectin (Excel COC only)	Notes / Spo	Water (DW) Samples ¹ (client use)	Drinking
Interest Towns of the first of the set of the							1. 22. AN
Image:							
Appendix Canada Tol Freque: 1000 680 807 Canada Tol Freque: 1000 680 807 Temporal Tolente Temporal Tolente <thtemporal th="" tolente<=""> Temporal T</thtemporal>							
Image: Note of the second s							
Invalidation Canada Toll Free: 1 800 668 987 Fragent 10 Canada Toll Free: 1 800 668 987 Fragent 10 Canada Toll Free: 1 800 668 987 Fragent 10 Canada Toll Free: 1 800 668 987 Fragent 10 Canada Toll Free: 1 800 668 987 Fragent 10 Canada Toll Free: 1 800 668 987 Fragent 10 Canada Toll Free: 1 800 668 987 Fragent 10 Canada Toll Free: 1 800 667 M Fragent 10 Canada Toll Free: 1 800 667 M Fragent 10 Canada Toll Free: 1 800 667 M Fragent 10 Canada Toll Free: 1 800 667 M Fragent 10 Canada Toll Free: 1 800 667 M Fragent 10 Canada Toll Free: 1 800 667 M Fragent 10 Canada Toll Free: 1 800 667 M Fragent 10 Canada Toll Free: 1 800 667 M Fragent 10 Canada Toll Free: 1 800 667 M Fragent 10 Canada Toll Free: 1 800 667 M Fragent 10 Canada Toll Free: 1 800 667 M Fragent 10 Canada Toll Free: 1 800 667 M Fragent 10 Canada Toll Free: 1 800 667 M Fragent 10 Canada Toll Free: 1 800 667 M Fragent 10 Canada Toll Free: 1 800 668 977 M Fragent 10	┝╴╿						
Number 10 Conserver blow wit spore on in function Name of the point of the poin			1246 "	77 - 11 - 17	Incate 10m	AND - SN AIMNY	
Autor and point of the report for the report of the repor			1240 h	21 - 11 - 22	: 3 F	201-50 JWWS	
Analytic for the fuel report Report 1 Transound Time (f/t) Requested Company State Company Company address below will appear on the find moon Sample Transound Time (f/t) Requested Company Company address below will appear on the find moon Sample Transound Time (f/t) Requested Company Company address Requested Company Company address Requested Compa	-		1250 4	21 - 11 - 22		SW M203- SM	9
Canada Toul Free: 1 800 668 9878 Fage of the full space on the space on		3 < < <	1254 Water	21-11-22		Jump 03 - Im	
Report Io Consist of company, fore below in appear on the final report Report Io Consist of company, fore below in appear on the final report Report Io Consist of company, fore below in appear on the final report Report Io Report Io Consist of company, fore below in appear on the final report Report Io Report Io Report Io Constant Report Io Report Io <td></td> <td>NUT To> Ch</td> <td>Time (hh:mm) Sample Type</td> <td>. (dd-mmm-yy)</td> <td>tification and/or Coordinates ption will appear on the report)</td> <td>Sample Iden (This descrip</td> <td>ALS Sample # (ALS use only)</td>		NUT To> Ch	Time (hh:mm) Sample Type	. (dd-mmm-yy)	tification and/or Coordinates ption will appear on the report)	Sample Iden (This descrip	ALS Sample # (ALS use only)
Canada Toll Free: 1 800 668 9878 Fage Report To Connex and commeny rune beaw will appen on the fail mont Report 1 Recipients Turaneound Time (7.17) Requested Report To Connex and commeny rune beaw will appen on the fail mont Report 1 Recipients Turaneound Time (7.17) Requested Turaneound Time (7.17) Requested Report 1 Connex and commeny rune beaw will appen on the fail mont Select Report 1 Recipients North Recipients Turaneound Time (7.17) Requested Turaneound Time (7.17) Requested Turaneound Time (7.17) Requested Connex as a soft with co cased Select Distribution: Marge COCICI Reports if Recipients Connex is converted by 3m NF- co sucharge mark Select Distribution: Marge COCICI Reports if Recipients Convert is an as a carbox in two cases Select Distribution: Marge COCICI Report if Recipients Convert is an as a carbox in two cases Select Invoice Distribution: Market is an as a carbox in two cases Select Invoice Distribution: Distribution: Distribution: Distribution: Distribution: Distribution: Distribution: Distribution: Distribution: Convert is an as a carbox in two cases Select Invoice Distribution: Recipients Recipients Recipients Recipient as a Carbox in thin anarbox in two cases Seart is		MBER	Sampler: TR	ALS CONTACT: SNEMA S.	, <u>3</u>	Order # (ALS use only):	ALS Lab Wor
Canada Toll Free: 1 800 668 8978 Transcuric Time (TAT) Requested Report To Connexist and conveny rane below will appear on the final insport Report Format: Reports / Recipients Transcuric Time (TAT) Requested Report To Connexist and conveny rane below will appear on the final insport Select Report Format: Reports / Recipients Transcuric Time (TAT) Requested Connexit: Convert Augusta Select Report Format: Reports / Recipients Transcuric Time (TAT) Requested Connexit: Convert Augusta Select Report Format: Reports / Recipients No East and augusta Augusta<		0F 860 60	- -	Location:			LSD:
Figure F	_			Requisitioner:			PO / AFE:
Appendix Canada Toll Free: 1800 668 9878 Turnaound Tine (TAT) Requested Turnaound Tine (TAT) Requested Company: Constant: Constant: Report Format:		- a	PO# - Routing Code:	AFE/Cost Center: Major/Minor Code:		2015 FN05	Job # (30
NAME Numuelsalobal.com Canada Toll Free: 1 800 668 9878 Page Report To Contact: Contact: Contact: Contact: Tunaround Time (TAT) Requested Contact: Tunac Tunac Tunac Select Report Formel: N: PF: A: ExcE ExD (NGT/AL) Contact: Tunaround Time (TAT) Requested Company: Tunac Tunac Select Report Formel: N: PF: A: ExcE ExD (NGT/AL) Contact: Company address below will appear on the final report Select Report Formel: N: PF: A: ExcE ExD (NGT/AL) Company address below will appear on the final report Select Report Formel: N: PF: A: ExcE ExD (NGT/AL) Company address below will appear on the final report Select Distribution: M: PF: A: Exceed by 3m MF - no suckarge and a 3m (PF) Presended by 3m MF - 2% nots sucharge mining Street: M: O: A:			d Fields (client use)	Oil and Gas Require		Project Information	
Report To Canada Toll Free: 1 800 668 9878 Turnound Time (TAT) Requested Company: Wm 200 Marcan downawy name below will appear on the final report Report 1 Report 1 <t< td=""><td></td><td></td><td>bicficon</td><td>Email 2 1 himerick ("</td><td></td><td></td><td>Contact:</td></t<>			bicficon	Email 2 1 himerick ("			Contact:
Age Age Age Page Report To Contract on ompany name below will appear on the final report Report To Contract on ompany name below will appear on the final report Report To Contract on ompany name below will appear on the final report Report To Contract on ompany name below will appear on the final report Select Report Formet: Report To Contract on Company address below will appear on the final report Select Report Formet: Report To Company address below will appear on the final report Select Distribution: A Provide datals below if tox checked Company address below will appear on the final report Select Distribution: A Provide datals below if tox checked Company address below will appear on the final report Select Distribution: A Provide datals below if tox checked Company address below will appear on the final report Select Distribution: A Provide datals below if tox checked Company address below will appear on the final report Email on Fax Company address below will appear on the final report Select Distribution: A Provid Prov A Provid Prov		SI Indicate Filared (F) Preserved (P) or Filared		Email 1 or Fax		Copy of Illivoide with Report	Company:
Canada Toll Free: 1 800 668 9878 Page MMW.alsglobal.com Report To Contact and company name below will appear on the final report Reports / Recipients Turnaround Time (TAT) Requested Company: Marge CACACHON Flux. Action Select Report Format: Marge CAC/CRI Reports / Recipients Turnaround Time (TAT) Requested Contact: Turne Call Call Call Call Report Format: Marge CAC/CRI Reports with COA Marge CAC/CRI Report so the flow if tox checked Sam MF - no sucharges apply Call Sam MF - no sucharges apply Contact and must call report so the final report Marge CAC/CRI Reports with COA Marge CAC/CRI Report format: Marge CAC/CRI Report format: Marge CAC/CRI Report so the flow if tox checked Sam MF - no sucharges apply Sam MF - no sucharges apply Sam MF - 20% runs sucharge mining Street: MOS 1 835 Box MUA A Email 1 or Fax Cod GG/CS Marge So CACF, Casy Same day [2] if received by 3m MF - 20% runs sucharge mining Street: MOG MARGE Email 1 Email 1 Email 1 Fax Cols and Time Required for ant sucharge and mining Street: MOG MARGE Email 3 Email 3 Email 3 </td <td></td> <td>For all tests with rush TATs requested, plea</td> <td>ecipients</td> <td>Invoice R</td> <td></td> <td>Same as Report To</td> <td>Invoice To</td>		For all tests with rush TATs requested, plea	ecipients	Invoice R		Same as Report To	Invoice To
Canada Toil Free: 1.800 668 9878 Page NAWY.alsglobal.com Report To Contact and company name below will appear on the final report Reports / Recipients Turnaround Time (TAT) Requested Contract Contract: Turnaround Time (TAT) Select Report Format: Marge QC/QCI Report Format: Marge Prepine Results of Charge Prepine Results of Char		Date and Time Required for all E&P TATs:		Email 3		VAT ONG	Postal Code:
Report To Contact and company name below will appear on the final report Reports / Reports / Recipients Turnaround Time (TAT) Requested Turnaround Time (TAT) Requested Company: Company name below will appear on the final report Select Report Format: M. ports / Recipients Turnaround Time (TAT) Requested Company Company: Model Company Contact: Model Select Report Format: M. ports / Recipients Turnaround Time (TAT) Requested Company Company: Model Company address below will appear on the final report Select Report Format: M. ports / Recipients Turnaround Time (TAT) Requested Company address below will appear on the final report Merge QC/QCI Reports with COA M. port - 20% nuch surcharges apply Company address below will appear on the final report Company address below will appear on the final report Company address below will appear on the final report Company address below will appear on the final report Company address below will appear on the final report Company address below will appear on the final report Company address below will appear on the final report Company address below will appear on the final report Company address below will appear on the final report Company address below will appear on the final report Company address below will appear on the final report Company address below will appear on the final report Company add		may apply to rush requests on weekends, statutory holidays and nop		Email 2		Nanamon BC	City/Province:
Report To Canada Toll Free: 1 800 668 9878 Fage Report To Contact and company name below will appear on the final report Reports / Reports / Recipients Turnaround Time (TAT) Requested Company: Cunstant of Company name below will appear on the final report Select Report Format: More Poorts / Recipients Turnaround Time (TAT) Requested Company: Cunstant of Company name below will appear on the final report Select Report Format: More Poorts / Recipients Turnaround Time (TAT) Requested Contact: Two Cunstant of Company name below will appear on the final report Select Report Format: More Poorts / Recipients More Poorts / Recipients More Poorts / Recipients Turnaround Time (TAT) Requested Contact: Two Cunstant of Company name below will appear on the final report Select Report Format: More Poorts / Recipients More P		1 day [E] if received by 3pm M-F - 100% rush surcharge minin	× 0 × 0		LO FUNA	#10- 1025 D.	Street:
Report To Contact and company name below will appear on the final report Reports / Reports / Recipients Turnaround Time (TAT) Requested Company: Contact and company name below will appear on the final report Select Reports / Recipients EDD (DiGTAL) Result of the reserved by 3pm MF - no sucharges apply Contact: Turnaround Time (TAT) Requested Select Report Format: Merge QC/QCI Reports with COA		2 day (P2) if received by 3pm M-F - 50% rush surcharge mining	provide details detow it box checked	Select Distribution:	on the final report	Company address below will appear of	
Report To Contract and company name below will appear on the final report Reports / Recipients Canada Toil Free: 1 800 668 9878 Page Company: Contract and company name below will appear on the final report Reports / Recipients Turnaround Time (TAT) Requested Company: Company: Company: Select Report Format: M ports / Recipients Turnaround Time (TAT) Requested		4 day [P4] if received by 3pm M-F - 20% rush surcharge minimi	YES CI NO CI NA	Merge QC/QCI Reports with COA	S	Thea Rodge	Contact:
Report To Contact and company name below will appear on the final report fraction of the final report of t		Routine [R] if received by 3pm M-F - no surcharges apply	EXCEL DEDD (DIGITAL)	Select Report Format: K PDF	non thurdation	be conservat	Company:
Page www.alsglobal.com		Turnaround Time (TAT) Requested	Recipients	Reports / F	ow will appear on the final report	Contact and company name belo	Report To
Page Page Page Page Page Page Page Page	- A		· · ·			www.alsglobal.com	ALS)
		Page	Free: 1 800 668 9878	🗸 🐛 🎽 🍃 Canada Toll	· •		je
		•					

Appendix 2 – Limnologist's report

Enos Lake Protection and Monitoring Program:

Review of Water Quality Data for 5 Year Period from 2017 to 2022

From PGL, 2016

For: BC Conservation Foundation, Lantzville Office

PO Box 7

Lantzville, B.C.

VOR 2H0

By: John Deniseger

December 2022

Summary

BCCF's Enos Lake annual fundamental water quality monitoring program in 2022 included components that are done on an annual basis as well as others that are done on a 5-year cycle. This report examines the results from the data collected in 2022, and compares them to Enos Lake water quality targets, BC water quality guidelines, and trophic status indicators for Enos Lake.

In 2022, the extreme summer drought once again appeared to exacerbate the annual summer anoxic conditions at depth. As a result, the lack of oxygen extended up into the relatively shallow waters of the thermocline, well into the fall. While it is not known whether this has occurred prior to 2017, it is concerning as the lake was more susceptible to a summer "fish kill". It appears that Enos Lake is generally mesotrophic to eutrophic, with annual climatic conditions which shift the lake to appearing more eutrophic. Climate change will present further challenges as summer water temperatures increase, summer stratification will begin earlier and extend later, with more severe oxygen depletion. The past 2 years are likely examples of the transition to more extreme summer conditions predicted in the future.

In 2022, Enos Lake would be considered a mesotrophic lake based on indicators such as phosphorus and eutrophic using chlorophyll a. For the first time since 2018, the annual mean phosphorus target of 12 ug/L was not met. Factoring in year-to-year variability and the lack of oxygen at depth during the summer, the data collected over the last 5 years suggests that Enos Lake is mesotrophic to eutrophic.

The 5-year cycle component of the program included bacteriological sampling, metals in the water column and PAHs in the sediment. The bacteriological sampling found that E. coli was well within the BC guidelines for primary recreational use (swimming), while metals were generally well within the BC guidelines for aquatic life. There were several examples requiring further interpretation. For instance, the mid-summer anoxic conditions in the deeper waters of Enos Lake, lead to the release of iron from the sediments in the lake, which then exceeded the BC guidelines. Copper concentrations in Enos Lake may be slightly elevated but require further data (dissolved organic carbon) for subsequent interpretation. In addition, while some PAHs have been detected in Enos Lake sediments, there is no information on the source or whether the source is historic or more recent.

1.0 Background

Enos Lake is a small lake with a surface area of 18 ha and a watershed area of approximately 235 ha. It is in a largely undeveloped area of the Fairwinds Community in Nanoose Bay, B.C. Approximately 12 ha have been developed with predominantly low-density residential housing (PGL, 2016, Nordin 2017).

While some water quality sampling has been carried out since 2006, a standardized sampling program was established in 2017. Sampling history prior to 2017 is further outlined in Nordin (2017). The 2018 through 2021 data are reviewed in Deniseger (2018, 2019, 2020, 2021).

The current water sampling program is intended to build a consistent, long-term database used to both act as a screening tool and to help assess the overall health of Enos Lake with respect to ongoing development, land use, and increasing population within the watershed over the next 10 to 20 years. Fundamental water chemistry and biology are indicators of water quality, potential change, and overall lake and watershed health. The data will be used to assess year-to-year lake health and trends over time. Annual sampling focuses on lake productivity through nutrient analysis and field data collection. Every

fifth year beginning in 2017 and recurring in 2022, additional sampling examines lake health through sediment sampling for PAHs, as well as mid-summer water column sampling for E. coli and metals. In 2022, BC Lake Stewardship Society (BCLSS) volunteers collected significant additional field data for secchi depth, temperature, and dissolved oxygen.

The purpose of this report is to review the annual data collected in 2021, as well as a summation of the 5year cycle data to provide a summary report documenting any changes or potential trends observed since 2017.

2.0 Water Quality Results

Table 2.0 below (PGL, 2016) outlines the standardized water quality monitoring which began in 2017. It also lays out the targets used to assist the interpretation of the water quality results for the various parameters.

P	arameter (units)	Water Quality Target	Future Monitoring ^a
Ē	Secchi Depth (m)	None – supporting context only	Quarterly sampling ^b at site SWMP-03, starting in 2017 and repeated annually
ofiles at	Dissolved Oxygen (mg/L and % saturation)	 ≥5 mg/L epilimnion ≥2 mg/L hypolimnion 	Quarterly sampling ^b at site SWMP-03, starting in 2017 and repeated annually
rs (pr ments	Conductivity (µS/cm)	None – supporting context only	Quarterly sampling ^b at site SWMP-03, starting in 2017 and repeated annually
amete incre	Temperature (°C)	None – supporting context only	Quarterly sampling ^b at site SWMP-03, starting in 2017 and repeated annually
d Pan	рН	None – supporting context only	Quarterly sampling ^b at site SWMP-03, starting in 2017 and repeated annually
Fiel	Redox (mV)	None – supporting context only	Quarterly sampling ^b at site SWMP-03, starting in 2017 and repeated annually
	E. coli (# per mL)	BC Water Quality Guidelines (recreation – secondary contact) ^c	August 2017: 5 times in 30 days. Surface sample from SWMP-03 and any two shoreline locations. Repeat on 5 year increment.
ø	PAHs (µg/mg)	BC Water Quality Guidelines (freshwater sediments)	August 2017: surface sediment from three locations: SWMP-06, SWMP-04 and SWMP-03.
Parameter	Metals (various)	BC Water Quality Guidelines (total metals, freshwater aquatic life). Both average and short-term maximum guidelines apply, where applicable.	February 2017 and August 2017: five samples in a 30 day period. Each sample to occur at three depths from SWMP-03. Sampling to be repeated on five year increments.
oratory	Chlorophyll a (µg/L)	Avoid any increase	Quarterly sampling at site SWMP-03, starting in 2017, and repeated annually. Samples to be taken from three depths (surface, mid, deep water)
Lab	Hardness (as CaCO ₃)	None – required to interpret metals data	February 2017 and August 2017: five samples in a 30 day period. Each sample to occur at three depths from SWMP-03. Sampling to be repeated on five year increments. Data required to interpret metals concentrations.
	Phosphorous (mg/L)	12 µg/L	Quarterly sampling at site SWMP-03, starting in 2017. Samples to be taken from three depths (surface, mid, deep water)

Table 2.0 Summary of Water Quality Monitoring Program for Enos Lake (PGL, 2016)

^aFuture monitoring is limited to the scope being taken on by the Developer and will continue until at least one year post build-out within the Enos Lake watershed. It is anticipated that some form of longer term monitoring will be undertaken by RDN in support of long term operation of stormwater infrastructure. ^bQuarterly sampling is defined as February, May, August, and November.

°It is assumed that swimming will not be a recreational use of Enos Lake. If that assumption is incorrect, primary contact guidelines should apply.

2.1 Secchi Depth

Secchi depth is a standard measure of water clarity, providing insight into lake health and productivity from both an aesthetic and ecological perspective. During storm events, it can also be used to qualitatively assess the transport of fine sediment from the watershed into the lake.

The 11 data points collected in 2017 showed substantial variation from 1.4 to 4.8 m with an average of 3 m. Due to the inherent variability in secchi data, Nordin (2017) recommended that the base sampling program include monthly secchi data collection.

In each of 2018 and 2019, only 5 data points were collected, ranging from 2.0 to 3.5 m, and 1.5 to 2.8 m, respectively.

More frequent secchi measurements have been collected in 2020, 2021 and again in 2022.

The data for 2022 ranged from a low of 1.8 m in February to a high of 3.6 m on mid-July. The annual average, based on 17 readings, was 2.7 m compared to 2.7 m in 2020 and 3.0 m in 2021. Overall, the readings were very similar to those taken in the previous 2 years. Low February readings in each year may be indicative of an early spring phytoplankton bloom.

Date	Secchi (m)	Date	Secchi (m)
February 15	1.8	August 15	2.5
May 16	2.8	August 17	3
May 23	2.6	Augusts 23	2.4
June 22	3.1	August 30	2.3
June 27	3.5	Sept 8	2.7
July 6	3.3	Sept 21	2.7
July 12	3.6	Sept 29	3.1
August 3	3	November 21	2.2
August 10	2.4		

Table 2.1 Secchi depth data for 2022

Annual mean 2.7 m

Table 2.2 Summary of Secchi depth data for 2017 – 2022

	2017	2018	2019	2020	2021	2022
No. of	11	5	5	10	13	17
readings						
Minimum (m)	1.4	2.0	1.5	1.0	0.8	1.8
Maximum (m)	4.8	3.5	2.8	4.3	4.0	3.6
Average (m)	3			2.7	3.0	2.7

2.2 Temperature

Field data collection in 2022 included temperature, dissolved oxygen, pH, conductivity, and redox potential profiles taken quarterly at station 03, the mid-lake sampling station.

Lake temperature has fundamental effects on a lake's seasonal response and susceptibility to watershed activities and disturbance. Thermal stratification is an important factor in understanding fundamental lake ecology and natural processes. Table 2.3 summarizes the lake temperature profiles for 2022.

The mid-February profile shows the lake to be effectively isothermal, unstratified and mixing, ranging from 4.4 to 5 degrees C. By May, the profile indicates a fairly weak thermocline and subsequent stratification reflecting the cool, wet, spring conditions persisting into the early summer of 2022. At that time, the upper 4 meters of Enos Lake was approximately 4 degrees C cooler than in 2021. The somewhat warmer upper layer (epilimnion) was about 4 meters deep overlying a deeper cool layer (hypolimnion). The transition zone between the two layers is known as the thermocline – it is defined by having a change of greater than 1 C per meter of depth change. The overall difference from top to bottom was only 5.2 C, compared to 10.6 C in 2021.

The relatively cool and somewhat wetter conditions persisted into mid-July, when the weather patterns "flipped" to warm and extremely dry through mid-October. Nevertheless, by late June the surface temperatures were in the low 20s, with a steep thermocline beginning at about 3 meters. Through August, the surface temperatures were consistently 24 to 25 °C, with a steep, compressed thermocline reaching 7 to 8 m in depth. On August 16th, the surface water was 16.2 °C warmer than the deepest waters of the lake. The very compressed nature of the August 2022 thermocline reflects the dry and warm summer of 2022.

Table 2.3 shows the consistent nature of the thermocline in Enos Lake through the summer months. The thermocline begins at approximately 3 m from late June through late August. This is fairly typical of small east coast Vancouver Island lakes that have minimal summer inflows and are protected from wind driven mixing. The surface waters warm relatively quickly in the spring, while the steep thermocline effectively isolates the relatively deeper waters of the lake found below the thermocline. As can be seen below the green shading in table 2.3, the hypolimnion of Enos Lake is limited to a fairly narrow band of 3 to 4 m during the summer months.

However, the data collected on September 29th found that the thermocline was showing signs of breaking down, which would then allow the lake water to mix or "turnover". The thermocline had weakened and the hypolimnion temperature had increased by about 3 °C. The warm, dry conditions in September and well into October may have allowed the thermocline to continue somewhat later than normal. The data collected on November 21st, 2022, confirmed that the lake was once again isothermal, unstratified and mixing (it had likely been so for some time).

Depth (m)	Feb 15	May 16	June 22	June 27	July 12	July 22	Aug 10	Aug 15	Aug 22	Aug 17	Aug 23	Aug 30	Sept 8	Sept 21	Sept 29	Nov 21
0.5	5.0	12.6	19.9	22.7	22.4	21.2	24.2	24.0	25	24.5	24.7	23.8	21	18.9	18.5	6.5
1	5.0	12.5	19.9	22.8	22.7	21.2	24.1	23.5	25	24.2	24.6	23.6	20.9	18.7	18.4	6.3
2	5.0	12.5	19.8	22.2	22.3	21.2	24.1	23.3	25.1	24.1	24.4	23.3	20.8	18.5	18.3	6.3
3	4.8	12.4	<mark>19.7</mark>	<mark>20.6</mark>	<mark>21.6</mark>	<mark>20.9</mark>	<mark>23</mark>	<mark>23.0</mark>	<mark>25.1</mark>	23.8	<mark>24.1</mark>	23.2	20.8	18.3	18.2	6.3
4	4.7	<mark>12.2</mark>	<mark>17.2</mark>	<mark>17.9</mark>	<mark>18.9</mark>	<mark>18.7</mark>	<mark>17.9</mark>	<mark>21.1</mark>	<mark>21.8</mark>	<mark>23.1</mark>	<mark>22</mark>	<mark>22.8</mark>	<mark>20.3</mark>	18.2	<mark>18.1</mark>	6.3
4.5								<mark>17.4</mark>								
5	4.7	10.3	<mark>13.4</mark>	<mark>14.1</mark>	<mark>15.2</mark>	<mark>15</mark>	<mark>14.2</mark>	<mark>15.4</mark>	<mark>17.2</mark>	<mark>16.9</mark>	<mark>17.7</mark>	<mark>17.8</mark>	<mark>17.6</mark>	17.7	17	6.3
5.5								<mark>13.1</mark>								
6	4.7	<mark>9.2</mark>	<mark>11.3</mark>	11.2	<mark>11.8</mark>	11.1	<mark>11</mark>	<mark>12.1</mark>	<mark>13.4</mark>	<mark>13.7</mark>	<mark>12</mark>	<mark>13</mark>	<mark>13.4</mark>	<mark>14.5</mark>	<mark>15.1</mark>	6.2
6.5								10.2								
7	4.7	<mark>8.2</mark>	<mark>9.4</mark>	<mark>9.2</mark>	<mark>9.7</mark>	<mark>9.6</mark>	<mark>9.2</mark>	<mark>9.6</mark>	<mark>10.5</mark>	11	<mark>10.1</mark>	<mark>10.5</mark>	<mark>10.3</mark>	<mark>10.9</mark>	<mark>13.2</mark>	6.2
8	4.6	7.7	8.5	8.3	<mark>8.6</mark>	<mark>8.4</mark>	9.1	<mark>8.6</mark>	9.7	<mark>9.7</mark>	9.3	<mark>9</mark>	<mark>9.1</mark>	<mark>9.6</mark>	12.9	6.1
9	4.5	7.5	8	8	8.4	8	9.1	8.2	10.2	9.6	9	8.8	8.6	9.4	12.5	6.0
10	4.5	7.5	7.18	7.8				7.9	10.1	9.3	8.9	8.8	8.4	9.3	12.4	6.0
11	4.4	7.4						7.8					8.3	9.3	12.3	6.0
														9.2		

Table 2.3 Enos Lake temperature profiles for 2022 (temperature °C) Green shading denotes thermocline

2.3 Dissolved Oxygen

See tables 2.4, 2.5 and 2.6 for the 2022 data for dissolved oxygen concentrations and percent saturation.

Field data is normally collected as the probes are lowered through the water column. As a check on field data, and to further enhance confidence in the data, field data collection was repeated as the probes were brought back to the surface. This is a simple, yet effective way to assess slow responding probes as they age or foul. The data is shown in Appendix 1. The data for dissolved oxygen was found to be very similar on the way up and the way down in each of the 4 data sets, increasing confidence in the data.

The late February sampling was done when the lake was isothermal with temperatures from 4.4. to 5.0 C (see table 2.3). Dissolved oxygen levels were high, consistently greater than 10.96 mg/L, with saturation from 84.7 to 101.7%. Overall, this reflects isothermal conditions and subsequent mixing throughout the water column. The relatively high saturation levels may once again be influenced by a phytoplankton bloom occurring in the early spring, as indicated by both the chlorophyll a and secchi data. Significant "blooms" can result in daytime oxygen supersaturation in lake waters.

The May sampling indicates a stratified lake with a thermocline between 3 and 7 meters deep, with greater than 88% oxygen saturation to 6 meters. However, the oxygen depletion increases rapidly with increasing depth. The additional data collected by BCCF volunteers in 2022 allows a more detailed look at the conditions in Enos Lake through the summer months. Using the dissolved oxygen target of 2 mg/L as a guide, in May, only the deeper waters of the lake at 11 to 12 m do not meet the target. As the summer progressed, the thermocline became more pronounced and the hypolimnion became more anoxic. As a result, the layer of the lake which does not meet the target of 2 mg/L, gradually works its way up into the thermocline through the summer. On August 15th, this layer reaches a depth of only 6.5 m while in late August through late September it continues to expand upwards to a depth of 6 m.

Decomposition of organic matter in the deeper waters is gradually consuming the oxygen present below the thermocline. It is highly likely that the summer droughts and heat which have occurred over the last two years have exacerbated the lack of oxygen at depth. The steep thermocline and lack of inflow severely limits mixing and oxygen replenishment, particularly at depth. This also makes Enos Lake susceptible to a late summer fish kill if wind induced mixing were to draw deeper anoxic water to the surface.

The late November profile reflects isothermal conditions due to the breakdown of the thermocline with dissolved oxygen levels greater than 8 mg/L throughout the water column and dissolved saturation ranging from 65.9 to 73.9%. While the dissolved oxygen levels meet the targets at all depths, they do remain somewhat lower than usual for the time of year. This may reflect the continuing relatively drier conditions which have prevailed throughout the fall. Inflows and mixing have continued to be limited due to the dry conditions.

In the epilimnion layer (above the thermocline), the water quality target for dissolved oxygen is greater than 5 mg/L. This target was met in each sample set. Below the thermocline in the hypolimnion, the target is 2 mg/L. This target was not met from late spring through early fall. The late August through late September data was particularly concerning as the lake was virtually anoxic below the mid-point of the thermocline. This is indicative of a productive lake with insufficient mixing/inflow, substantial organic decomposition at depth, as well as internal loading and subsequent release of phosphorus from the sediments.

Table 2.4 Enos Lake dissolved oxygen profiles for 2022 (mg/	yellow shading denotes area of lake below D.O. threshold of 2 mg/L
---	--

Depth (m)	Feb 15	May 16	June 22	June 27	July 12	July 22	Aug 10	Aug 15	Aug 17	Aug 22	Aug 23	Aug 30	Sept 8	Sept 21	Sept 29	Nov 21
0.5	12.92	10.0	8.8	8.57	8.38	8.36	8.4	7.98	8.82	8.46	8.79	8.57	8.35	8.6	9	8.66
1	12.26	10.2	8.85	8.62	8.37	8.32	8.93	7.96	8.89	8.44	8.83	8.61	8.25	8.48	8.78	9.11
2	12.26	10.3	8.65	8.64	7.88	8.05	8.91	7.08	8.88	8.43	8.79	8.52	8.18	8.44	8.68	8.88
3	12.05	10.2	8.83	8.69	8.06	8.06	6.62	6.79	8.89	8.4	8.57	8.23	8.21	8.42	8.63	8.50
4	12.38	10.2	8.95	8.81	7.95	7.79	10.1	7.61	8.7	10.55	9.5	7.92	7.98	8.34	8.48	9.13
4.5								6.97								
5	11.86	11.0	9.38	9.52	8.23	9.66	7.5	6.33	6.36	9.03	4.84	3.92	2.25	6.68	5.6	8.40
5.5								6.06								
6	11.90	10.1	8.8	9.21	8.23	7.51	2.03	3.58	4.6	6.88	<mark>1.37</mark>	<mark>0.96</mark>	<mark>0.56</mark>	2.1	<mark>1.15</mark>	8.45
6.5								<mark>1.16</mark>								
7	11.93	5.3	6.18	5.52	5.4	4.95	<mark>-0.07</mark>	<mark>0.20</mark>	<mark>1.35</mark>	3	<mark>0.16</mark>	<mark>0.12</mark>	<mark>0.21</mark>	<mark>0.68</mark>	<mark>0.4</mark>	8.43
8	12.01	3.6	2.05	<mark>0.42</mark>	<mark>0.65</mark>	<mark>-0.03</mark>	<mark>-0.07</mark>	<mark>0.10</mark>	<mark>0.39</mark>	<mark>0.27</mark>	<mark>-0.1</mark>	<mark>-0.06</mark>	<mark>0.07</mark>	<mark>0.33</mark>	<mark>0.22</mark>	8.42
9	10.96	2.8	<mark>0.13</mark>	<mark>0.06</mark>	<mark>0.01</mark>	<mark>-0.13</mark>	<mark>-0.016</mark>	<mark>0.08</mark>	<mark>0.03</mark>	<mark>0.07</mark>	<mark>-0.13</mark>	<mark>-0.12</mark>	<mark>0.01</mark>	<mark>0.2</mark>	<mark>0.07</mark>	8.41
10	11.27	2.2	<mark>0.01</mark>	<mark>-0.05</mark>				<mark>0.08</mark>	<mark>-0.07</mark>	<mark>-0.02</mark>	<mark>-0.15</mark>	<mark>-0.13</mark>	<mark>-0.04</mark>	<mark>0.06</mark>	<mark>0.03</mark>	8.42
11	11.24	<mark>1.0</mark>						<mark>0.07</mark>					<mark>-0.06</mark>	<mark>0.01</mark>	<mark>-0.01</mark>	8.11
12		<mark>0.6</mark>												<mark>-0.02</mark>		

Table 2.5 Enos Lake temperature profiles (°C) for 2022 showing thermocline and area of lake below D.O. threshold of 2 mg/LGreen shading denotes thermoclinered numerals denote area of lake below D.O. threshold of 2 mg/L

Depth (m)	Feb 15	May 16	June 22	June 27	July 12	July 22	Aug 10	Aug 15	Aug 22	Aug 17	Aug 23	Aug 30	Sept 8	Sept 21	Sept 29	Nov 21
0.5	5.0	12.6	19.9	22.7	22.4	21.2	24.2	24.0	25	24.5	24.7	23.8	21	18.9	18.5	6.5
1	5.0	12.5	19.9	22.8	22.7	21.2	24.1	23.5	25	24.2	24.6	23.6	20.9	18.7	18.4	6.3
2	5.0	12.5	19.8	22.2	22.3	21.2	24.1	23.3	25.1	24.1	24.4	23.3	20.8	18.5	18.3	6.3
3	4.8	12.4	19.7	<mark>20.6</mark>	<mark>21.6</mark>	<mark>20.9</mark>	23	23.0	<mark>25.1</mark>	23.8	<mark>24.1</mark>	23.2	20.8	18.3	18.2	6.3
4	4.7	<mark>12.2</mark>	<mark>17.2</mark>	<mark>17.9</mark>	<mark>18.9</mark>	<mark>18.7</mark>	<mark>17.9</mark>	21.1	<mark>21.8</mark>	<mark>23.1</mark>	<mark>22</mark>	<mark>22.8</mark>	<mark>20.3</mark>	18.2	<mark>18.1</mark>	6.3
4.5								<mark>17.4</mark>								
5	4.7	<u>10.3</u>	<mark>13.4</mark>	<mark>14.1</mark>	<mark>15.2</mark>	<mark>15</mark>	<mark>14.2</mark>	<mark>15.4</mark>	<mark>17.2</mark>	<mark>16.9</mark>	<mark>17.7</mark>	<mark>17.8</mark>	<mark>17.6</mark>	<mark>17.7</mark>	17	6.3
5.5								<mark>13.1</mark>								
6	4.7	<mark>9.2</mark>	<mark>11.3</mark>	<mark>11.2</mark>	<mark>11.8</mark>	11.1	11	12.1	<mark>13.4</mark>	<mark>13.7</mark>	<mark>12</mark>	<mark>13</mark>	<mark>13.4</mark>	<mark>14.5</mark>	<mark>15.1</mark>	6.2
6.5								10.2								
7	4.7	<mark>8.2</mark>	<mark>9.4</mark>	<mark>9.2</mark>	<mark>9.7</mark>	<mark>9.6</mark>	<mark>9.2</mark>	9.6	10.5	<mark>11</mark>	10.1	10.5	<mark>10.3</mark>	<mark>10.9</mark>	<mark>13.2</mark>	6.2
8	4.6	7.7	8.5	8.3	<mark>8.6</mark>	<mark>8.4</mark>	9.1	<mark>8.6</mark>	9.7	<mark>9.7</mark>	9.3	<mark>9</mark>	<mark>9.1</mark>	<mark>9.6</mark>	12.9	6.1
9	4.5	7.5	8	8	8.4	8	9.1	8.2	10.2	9.6	9	8.8	8.6	9.4	12.5	6.0
10	4.5	7.5	7.18	7.8				7.9	10.1	9.3	8.9	8.8	8.4	9.3	12.4	6.0
11	4.4	7.4						7.8					8.3	9.3	12.3	6.0
12														9.2		

Profile - Site SWMP-03 dissolved oxygen (% saturation)					
	2/15/2022	5/16/2022	8/15/2022	11/21/2022	
	D.O.	D.O.	D.O.	D.O.	
Depth (m)	(%saturation)	(%saturation)	(%saturation)	(%saturation)	
0.5	101.7	94.2	95.8	70.4	
1	96.0	95.6	93.8	73.8	
2	95.9	96.5	82.7	72.0	
3	94.0	95.1	78.9	69.5	
4	96.3	94.8	86.2	73.9	
4.5			73.0		
5	92.2	97.2	63.6	68.0	
5.5			57.5		
6	92.4	88.3	33.0	68.3	
6.5			10.5		
7	92.7	45.1	1.8	68.4	
8	93.0	30.2	0.8	67.8	
9	84.7	23.9	0.7	67.6	
10	86.9	18.7	0.6	67.7	
11	86.7	8.3	0.5	65.9	
12		4.8			

Table 2.6 Enos Lake Dissolved Oxygen saturation profiles for 2022 (from Standard Methods for the examination of water and wastewater) – provided by BCCF

2.4 Conductivity

As a simple measure of dissolved ions in the water, conductivity is a general indicator of lake health and watershed disturbance, in support of other data.

The profile for late February when the lake was not stratified showed minimal variability ranging from 122.7 to 123.9 μ S/cm. In May, conductance ranged from 125.8 μ S/cm to 135.0 μ S/cm. In August, conductance behaved differently, exhibiting 3 fairly distinct layers; the epilimnion above the thermocline was consistently at 140.8 to 141.0 μ S/cm, before decreasing through the thermocline ranging from 130.9 μ S/cm to 134.5.0 μ S/cm. Below the thermocline, conductance steadily increased from 134.5 μ S/cm at 7m to 156.4 μ S/cm at 11 m. In November, the lake was once again effectively isothermal, and conductance showed minimal variability ranging from 136.7 μ S/cm to 137.6 μ S/cm. While there is some year-to-year variability, the overall trends appear to be similar from year to year. The relative lack of summer rain and inflow to the lake produces a strong thermocline, which limits vertical mixing in the lake. Decomposition in the hypolimnion results in anoxic or near anoxic conditions at depth, which in turn results in internal loading of phosphorus. Evaporation at the lake surface results in an increase in conductance, while an accumulation of dissolved ions and organic matter at depth increases conductance in the hypolimnion. While the thermocline did breakdown through the fall, the overall somewhat higher conductance throughout the water column in late November reflects the lack of precipitation, flushing and replenishment that normally occurs by then.

Overall, conductivity appears to be within the range to be expected for this area, given the precipitation, watershed runoff and previous data (Nordin, 2017).

Profile - Site SWMP	2-03			
	2/15/2022	5/16/2022	8/15/2022	11/21/2022
Depth (m)	Conductivity (μS/cm)	Conductivity (μS/cm)	Conductivity (μS/cm)	Conductivity (μS/cm)
0.5	122.8	127.0	141.0	136.8
1	122.8	127.1	141.0	136.7
2	122.7	126.8	140.8	136.9
3	122.8	126.9	140.9	136.8
4	122.7	127.0	137.3	137.0
4.5			131.7	
5	122.9	125.8	130.9	137.0
5.5			131.5	
6	122.9	126.0	132.7	137.1
6.5			132.6	
7	122.8	128.8	134.5	137.1
8	122.9	130.2	144.0	137.1
9	123.4	131.0	151.2	137.1
10	123.8	131.4	155.5	137.1
11	123.9	133.6	156.4	137.6
12		135.0		

Table 2.7 Enos Lake conductivity profiles for 2022

2.5 pH

Enos Lake pH data is summarized in table 2.9 below

A field data check as the probes were brought back to the surface was used to assess potentially slow responding probes as they age or foul. The data is shown in Appendix 1. The pH data for both February and May were quite different on the way up and way down, indicating possible calibration issues or more likely that the probe was not responding well. As a result, the pH data for February and May was not used. In contrast, the August and November data proved to be very similar on the way up and down.

In August 2022, pH ranged from 8.08 at the surface to 7.9 above the thermocline, before declining through the thermocline to 6.72 at 7 m, and remaining consistent to the lake bottom at 11 m. This was very similar to what was observed in both 2020 and 2021. This may be related to phytoplankton blooms, gradual oxygen depletion and internal loading at depth. In eutrophic lakes, photosynthesizing phytoplankton blooms can raise pH levels in the surface waters. At depth, the bacterial decomposition of organic matter consumes oxygen and releases acidic byproducts, which can cause pH to decrease.

In November, the lake had returned to isothermal conditions, with a very slight pH fluctuation down to 11 meters in depth. There was a decrease of less than 0.1 pH units to 7.21 at 11 meters.

Profile - Site SWMP-03						
	8/15/2022	11/21/2022				
Depth (m)	pH (pH units)	pH (pH units)				
0.5	8.08	7.28				
1	8.12	7.28				
2	8.10	7.25				
3	7.90	7.24				
4	7.60	7.24				
4.5	7.04					
5	6.94	7.24				
5.5	6.89					
6	6.82	7.23				
6.5	6.72					
7	6.72	7.21				
8	6.72	7.20				
9	6.74	7.22				
10	6.75	7.21				
11	6.75	7.21				
12						

Table 2.8 Enos Lake pH profiles for 2022

2.6 Redox

Redox potential (sometimes referred to as ORP) measures the lake's ability to be in balance while breaking down organic waste products such as dead and decaying plant matter and plankton. When redox values remain higher, there is lots of oxygen in the water reflecting a balance between lake productivity, watershed health and available oxygen. In general, the higher the redox values, the healthier the lake is, so that bacteria can break down organic matter more efficiently. However, even in healthy lakes, there is generally less oxygen as you approach the bottom sediments, a reflection of the bacterial activity in the sediments.

Over time, there can be an accumulation of slowly decomposing organic matter on the lake bottom, which will further drive the redox and oxygen levels down. This is not a healthy environment for fish or other aquatic organisms. In healthy lakes, redox potential values often range from 300 to 500 mV. In poorly oxygenated water, such as the deeper water of stratified lakes or the sediment of eutrophic lakes, the redox potential will be low (less than 100 mV or even negative values). When redox is low, dissolved oxygen is low, and phosphorus is released from the sediments. This is often referred to as "internal loading" of phosphorus, a process which further exacerbates the eutrophication of lakes, making recovery more difficult. Enos Lake is particularly susceptible to internal loading due to its strong summer thermocline, which limits vertical mixing, and lack of significant summer inflows due to the generally dry summers typical of the area.

While phosphorus is released from the sediments into the water column during the summer months, it is reabsorbed by the sediments when the thermocline breaks down as the lake cools and mixes during the fall. The process repeats itself annually, as it recycles much of the phosphorus through the lake.

While redox potential can only be measured in the field, it can frequently be a challenge. Redox reactions are slow to equilibrate in the natural environment so that the readings are often considered "semi-quantitative". Probes need frequent maintenance, can have a relatively short shelf life, and can become very slow to respond in the field as they age.

A field data check as the probes were brought back to the surface was used to assess potentially slow responding probes as they age or foul. The data is shown in Appendix 1. The "way up and way down" comparisons illustrate the challenges when measuring redox, as the data was significantly different, likely due to a very slow responding probe. This is best illustrated in the August 15th data as the redox decreases substantially in the deeper waters of the lake. On the way back up, the probe does not recover, continuing to measure very low redox. As a result, the redox data collected in 2022 has been placed in appendix 1 c) and will not be included in the interpretation portion of this report.

2.7 Chlorophyll a

Enos Lake chlorophyll a data is summarized in table 2.9 and figure 1 below

Chlorophyll a is a measure of the algal pigments in lake water and is used to assess overall lake biological productivity.

In 2022, 7 of 12 samples were higher than 10 ug/L, including 7 of the 9 samples in May through November, with the highest daily mean occurring in November. The steep thermocline and lack of oxygen at depth in August resulted in significant release of phosphorus from the sediments of Enos Lake. This phosphorus remained effectively isolated in the deeper waters of the lake until well into the fall, when the lake "turned over." The late September field profiles showed that the thermocline was beginning to weaken. By late November, the lake was once again isothermal, allowing mixing of the deeper, relatively phosphorus rich waters of the lake. Due to the lack of significant fall rains, the lake has not been "flushed" by replenishing surface water. As a result, the phosphorus has likely produced a phytoplankton bloom. This is supported by the secchi depth reading of only 2.2 m, one of the lowest of the year. The annual chlorophyll a mean is the highest measured since the program began in 2017, but remains very similar to that found in 2017 and 2018,

General trophic status classification using chlorophyll a is based on: <2 ug/L indicates an oligotrophic lake; 2 to 7 ug/L indicates a mesotrophic lake; >7ug/L indicates a eutrophic lake. Enos Lake's 2022 mean concentration of 10.71 ug/L was indicative of a eutrophic or productive lake, as was the case in 2017 and 2018.

A further target for Enos Lake was to avoid any increase in chlorophyll a over time. Based on the data gathered over the last 6 years, this target has thus far been met.

Table 2.9 a) Enos Lake chlorophyll a data for 202	2
---	---

SWMP-03 - chlorophyll a ug/L				
	2/15/2022	5/16/2022	8/15/2022	11/21/2022
Depth (m)				
1	8.56	8.18	5.78	16.6
5	7.10	15.2	10.2	14.0
10	8.15	11.60	10.4	12.7*
Daily mean	7.94	11.66	8.8	14.43
Annual mean				10.71

*average of 2 samples

Table 2.9 b) Enos Lake Daily and Annual mean chlorophyll a data for 2017 to 2022

SWMP-03 - chlo					
	FEBRUARY	ΜΑΥ	AUGUST	NOVEMBER	ANNUAL MEAN
2017	11.9	9.82	13.78	6.69	10.55
2018	8.6	8.4	12.4	11.5	10.2
2019		6.61	4.14	2.87	4.54
2020	10.3	2.69	10.9	12.9	9.2
2021	7.73	4.27	6.85	8.65	6.87
2022	7.94	11.66	8.8	9.43	10.71

Figure 1. Annual mean chlorophyll a over time in Enos Lake

2.8 Phosphorus

In lakes, phosphorus is an important nutrient and a key indicator of lake productivity. Excessive phosphorus can result in significant algal blooms and subsequent low dissolved oxygen levels, impacts on drinking water, fish health and recreational use. The water quality target for Enos Lake appears to be an annual average total phosphorus of 12 ug/L. In 2022, the annual average of 14.4 ug/L did not meet the target, for the first time since 2018.

In 2017 and 2018, very high phosphorus values were found through the summer and fall, particularly at depth, likely an indication of a prolonged oxygen deficit in the hypolimnion and subsequent internal loading of phosphorus from the lake sediments. Concentrations between 20 and 40 ug/L were not uncommon. In 2022, relatively higher concentrations were measured throughout the water column in May (13.4 to 17.3 ug/L). In August, total phosphorus was at 18.4 ug/L at 5 meters, increasing to 33.3 ug/L at depth, reflecting internal loading of phosphorus. In November, levels had decreased to 11.7 to 14.1 ug/L, still somewhat elevated, reflecting the lack of overall flushing through the fall.

From 2019 through 2021, there had been no phosphorus measurements higher than 20 ug/L. In both 2019 and 2020, the summer weather included reasonable precipitation which would have provided some inflow and limited surface replenishment. In 2021, on the other hand, there was virtually no rain from mid-June through mid-September. In 2022, the weather was cool and damp through mid-July, before switching completely to dry and warm well into the fall. By late November, precipitation remained significantly below that typical for the area. It would appear that phosphorus levels had remained lower for 3 years, before increasing in 2022.

Another method of evaluating lake trophic status is based on the overall assessment of total phosphorus. In lakes with longer residence times (>1 year), the assessment is based on concentrations at spring overturn, prior to the establishment of a thermocline. In lakes with shorter residence times (<1 year), it is based on an annual mean. Lakes are considered to be oligotrophic if total phosphorus is less than 10 ug/L; mesotrophic when ranging from 10 to 30 ug/L; and eutrophic when greater than 30 ug/L. Using this assessment method, Enos Lake would generally be considered mesotrophic from 2017 through 2022, with the exception of 2019 when it would be classified as oligotrophic.

Site SWMP-03 - total Phosphorus ug/L					
	2/15/2022	5/16/2022	8/15/2022	11/21/2022	
Depth (m)					
1	9.7	15.0	9.1	14.1	
5	8.9	13.4	18.4	11.7	
10	9.2	17.3	33.3	13.0*	
Annual					
mean	14.4				

Table 2.10 Enos Lake total phosphorus data for 2022

*average of 2 samples

Site SWMP-03 – Orthophosphate ug/L					
	2/15/2022	5/16/2022	8/15/2022	11/21/2022	
Depth (m)					
1	1.1	No data	<1	<1	
5	<1	No data	1.2	<1	
10	1.3	No data	<1	<1	

Table 2.11 Enos Lake orthophosphate data for 2022

Figure 2. annual mean total phosphorus over time in Enos Lake

Table 2.12 Annual Mean total phosphorus in Enos Lake

Site SWMP-03 – total phosphorus ug/L					
ANNUAL MEAN					
2017	2018	2019	2020	2021	2022
19	14.4				

3.0 Discussion – water column and lake productivity

The primary intent of the annual portion of the Enos Lake monitoring program is to gain insight into the current status and trends in lake productivity. This is important in that watershed disturbance and land use, together with climate change impacts, have the potential to shift the lake's trophic status. As lakes become more eutrophic (more biologically productive), algal blooms (including blue green algal blooms) can become more prevalent leading to lower dissolved oxygen levels, impaired water quality, and impacts on recreational use and drinking water. There are examples of lakes on the east coast of Vancouver Island and the Gulf Islands where this has occurred. Once lakes become eutrophic or hypereutrophic, it is very difficult to reverse this process. Prevention is a far more effective tool in protecting lake water quality.

The summer of 2022 was unusual in that relatively wetter, cooler conditions persisted through mid-July, followed by an extreme drought until mid to late October. While the worst of the drought ended in late

October, stream flows remained significantly lower than normal through early December. This was the second successive summer characterized by extreme drought, resulting in a very steep and compressed thermocline through the summer. While the epilimnion dissolved oxygen target was met, the hypolimnion target was once again not met, from May through at least the end of September. As seen in 2021, the virtually anoxic zone extended well up into the thermocline. The extra field profile data collected by BCLSS volunteers in 2022 showed that this persisted from mid-August through to the end of September.

This has not been seen prior to 2021. If this continues or worsens, the lack of oxygen through the thermocline may make Enos Lake susceptible to a late summer "fish kill" given the right atmospheric conditions: low atmospheric pressure and windy conditions in late summer may bring relatively shallow anoxic water to the surface. The resulting mixing could result in low oxygen levels throughout the water column. If fish cannot find a layer of sufficient oxygen, a "fish kill" may occur.

Chlorophyll a, total phosphorus and secchi depth are fundamental indicators used to assess lake trophic status. The secchi depth data has consistently suggested that Enos Lake is eutrophic or on the edge of mesotrophic and eutrophic. Total phosphorus continues to accumulate at depth due to internal loading, from spring through early fall. The difference in 2022 is the extent, timing, and duration of the summer drought. In 2021, the extreme summer drought ended in mid-September, as rainfall allowed the lake to gradually "turnover" while replenishing and flushing the lake. In 2022, the summer drought began in mid-July, persisting through mid to late October. While the lake had "turned over" as shown in the November field profile, there had not been sufficient rainfall to replenish and flush the lake. As a result, phosphorus continued to accumulate much later into the fall, and had not yet been flushed out by late November. Concentrations in 2022 approached the levels found in 2017 and 2018, after 3 years of lower phosphorus levels.

Mean annual average chlorophyll a data for 2022 classified Enos Lake as eutrophic. For the first time since 2018, the total phosphorus target of 12 ug/L was not met, although the annual average suggested that Enos Lake was a mesotrophic lake. Not surprisingly, chlorophyll a and total phosphorus appear to be following a similar pattern over the last 5 years. The highest concentrations were in 2017 and 2018, followed by a substantially lower value in 2019 and more moderate levels in 2020 and 2021, before increasing again in 2022. However, it appears that Enos Lake is mesotrophic to eutrophic, with annual climatic condition that can shift the lake to more eutrophic conditions. The overarching target of no increase in chlorophyll a over time is currently being met.

Table 3.1 Year to year status of key indicators and targets

	2017	2018	2019	2020	2021	2022
Secchi	Mesotrophic to eutrophic	eutrophic*	eutrophic*	eutrophic	Mesotrophic to eutrophic	eutrophic
Dissolved oxygen at epilimnion – target of >5 mg/L	Target met	Target met	Target met	Target met	Target met	Target met
Dissolved oxygen at hypolimnion – target of >2 mg/L	Target not met	Target not met	Target not met	Target not met	Target not met	Target not met
Chlorophyll a	eutrophic	eutrophic	mesotrophic	eutrophic	mesotrophic	eutrophic
Chlorophyll a		No increase	over time			
				Target just		Target not
	Target not met –	Target not met	Target met –	met-	Target met –	met –
Total phosphorus	indicates	 indicates 	indicates	Indicates	indicates	indicates
target of 12 ug/L	mesotrophic	mesotrophic	oligotrophic	mesotrophic	mesotrophic	mesotrophic

*Preliminary assessment as insufficient data collected

Weather patterns for the summers of 2021 and 2022 were extreme, with extended droughts and higher temperatures. It is anticipated that summers such as this will become more common due to climate change. In a typical summer, the dissolved oxygen target at depth is not met. During the prolonged summer droughts of the last 2 years, the lack of oxygen at depth progressed well upwards into the thermocline, potentially making Enos Lake susceptible to a "fish kill". It is not known if the conditions observed this year have occurred in the past. Regardless, they are likely to re-occur more frequently in upcoming years. The lack of fall rain in 2022 likely impacted the conditions seen in Enos Lake over the last few years, resulting in more eutrophic conditions.

While there is year-to-year variability in Enos Lake water quality, there are a number of constants: strong summer stratification; low dissolved oxygen at depth, and internal loading of phosphorus during the summer months. Secchi depth, chlorophyll a and total phosphorus levels appear to indicate that Enos Lake is moderately productive, hovering between mesotrophic and eutrophic.

Existing water quality and increasing climactic extremes make Enos Lake very susceptible to watershed disturbance impacts. If Enos Lake gradually becomes more eutrophic to hyper-eutrophic, it will be very difficult to restore the lake. Coupled with summer droughts, fish kills could become more likely. It is far more effective to apply preventative best management practices to protect and maintain Enos Lake water quality.

4.0 Bacteriological indicators

Every 5 years, during the summer, the surface waters of Enos Lake are sampled for E. coli at 3 locations (see Table 4.1). The sampling occurs weekly for 5 consecutive weeks (i.e. 5 samples within 30 days). The purpose of the sampling is to assess the lake for potential fecal contamination which could impact primary recreational use such as swimming. The BC water quality guidelines (BC Approved Water Quality Guidelines, 2021) of a geometric mean of 200/100 mL based on 5 samples in 30 days, or no individual result higher than 400/100 mL were easily met in all samples taken in both 2017 and 2022.

Table 4.1 E. coli data for Enos Lake

Enos Lake E. coli data (no./100 mL)			
	SWMP-06	SWMP-04	SWMP-03
24-Aug-2017	5	9	1
29-Aug-2017	7	7	1
5-Sep-2017	21	3	1
11-Sep-2017	31	6	6
14-Sep-2017	5	7	9
2017 geometric mean	10	6	2
2-Aug-2022	1	0	0
9-Aug-2022	2	1	1
15-Aug-2022	1	0	2
23-Aug-2022	7	9	1
29-Aug-2022	6	8	1
2022 geometric mean	2	2*	1*

*for purposes of calculating geometric mean zero values were replaced with 1/100 mL

5.0 Metals in Enos Lake

Every 5 years, weekly sampling for metals (5 times in 30 days) is done at three depths (1, 5 and 10 meters) in early spring and again in midsummer. In 2017, with the exception of March 2nd, the data is for dissolved metals only, with the exception of March 2nd when the analysis included both total and dissolved metals. In 2022, all of the data was for total metals only.

The BC water quality guidelines (Table 5.1) are largely based on total metals with a few exceptions. Most have an acute or maximum guideline, as well as a chronic guideline based on the average of 5 samples taken within 30 days. Since the majority of the data is well within the guidelines at all depths, and there is generally minimal variability throughout the water column, the data has been summarized in tables 5.2 and 5.3. The discussion below is limited to the metals that show variability with depth or those that potentially exceed the guidelines, requiring further interpretation. Table 5.1 Summary of Applicable BC water quality guidelines (British Columbia Ministry of Environment and Climate Change Strategy. 2021)

	BC water quality guideline for aquatic life – total metals unless specified otherwise			
	Chronic (average) maximum (ug/L)	Short term acute (maximum) (ug/L)		
Aluminum (Al)	50 dissolved Al	100 dissolved Al		
Arsenic (As)	-	5		
Boron (B)	1200			
Cadmium (Cd)	0.127	0.288		
Cobalt (Co)	4	110		
Copper (Cu)	Estimated at 0.4 dissolved Cu*	Estimated at 2.3 dissolved Cu*		
Iron (Fe)	350	1000		
Lead (Pb)	4.6**	33.8**		
Manganese (Mn)	825**	1091**		
Mercury (Hg)				
Molybdenum (Mo)	7600	46000		
Selenium (Se)	2			
Silver (Ag)	0.05**	0.1**		
Zinc (Zn)	7.5**	33**		

* based on hardness of 30 mg/L, pH of 7 and DOC of 3.0 mg/L

** based on hardness of 50 mg/L

5.1 Aluminum

The water quality guideline for aluminum is based on dissolved aluminum only. For freshwater with a pH \geq 6.5, the chronic guideline is 50 ug/l while the acute guideline is 100 ug/L. In 2017, dissolved aluminum was well below the guidelines in all samples. In 2022, the data was limited to total aluminum only, which would over estimate the amount of dissolved aluminum in the water column. In February 2022, the total aluminum average of 60.18 ug/L exceeded the dissolved aluminum chronic guideline of 50 ug/L. The acute guideline of 100 ug/L was met in February, while both guidelines were met in August 2022.

On March 2nd, 2017, data for both dissolved and total aluminum is available. At that time, dissolved aluminum was only 39 to 49 % of total aluminum. Using that as an example, it is likely that the dissolved aluminum levels in February 2022 would have been substantially lower than total aluminum, and likely would have met the chronic guideline. This is further supported by the elevated turbidity in the August 15th, 2022 sample at 10 meters (Table 5.4), which indicates higher particulates in the deeper waters of the lake.

5.2 Copper

The calculation of the BC guideline for dissolved copper is more complex. The major factors influencing dissolved copper toxicity are dissolved organic carbon (DOC), hardness, and pH. The biotic ligand model is used to calculate appropriate dissolved copper guideline for the specific water body. In addition, the background or baseline concentration of copper must also be considered as mineralogy can influence baseline levels. It is beyond the scope of this report to use the biotic ligand model as no DOC data has been collected.

To get an **approximation** of what the guideline for copper might be for Enos Lake, a pH of 7.0, temperature of 15 C, and DOC of 3.0 mg/L was used to calculate an approximate chronic guideline of 0.4 ug/L and an approximate acute guideline of 2.3 ug/L dissolved copper. Using this as an estimate, the dissolved copper levels in March and August 2017 exceeded the chronic guideline. The total copper levels in 2022, which likely overestimate dissolved copper, exceeded both the estimated chronic and acute guideline in 2022. While this is useful as a hypothetical exercise, it remains of limited use without DOC and dissolved copper data.

Dissolved Metals by ICPMS - at SWMP03	Units	March 2017 average	March 2017 maximum	August 2017 average	August 2017 maximum
Dissolved Aluminum (Al)	ug/L	21.33	24.00	16.52	29.40
Dissolved Arsenic (As)	ug/L	0.14	0.15	0.17	0.19
Dissolved Boron (B)	ug/L	<50	<50	<50	<50
Dissolved Cadmium (Cd)	ug/L	0.02	0.02	<0.01	<0.01
Dissolved Cobalt (Co)	ug/L	<0.20	<0.20	0.25	0.29
Dissolved Copper (Cu)	ug/L	1.05	2.23	0.57	1.10
Dissolved Iron (Fe)	ug/L	112	120	347	1420
Dissolved Lead (Pb)	ug/L	1.51	5.69	0.22*	0.29
Dissolved Manganese (Mn)	ug/L	23.61	27.60	325.22	726.00
Dissolved Mercury (Hg)	ug/L	<0.05	<0.05		
Dissolved Molybdenum (Mo)	ug/L	1.40	1.40	<1.0	<1.0
Dissolved Selenium (Se)	ug/L	<0.1	<0.1	<0.10	<0.10
Dissolved Silver (Ag)	ug/L	<0.02	<0.02	<0.020	<0.020
Dissolved Zinc (Zn)	ug/L	8.41	18.70	6.94*	15.20
*average values calculated using less than values i.e. they are an overestimate					

Table 5.2 Summary of 2017 Metals data for Enos Lake

Table 5.3 Summary of 2022 Metals data at all depths for Enos Lake

Total Metals by ICPMS - at SWMP03	L Lucitor	February	February 2022	August 2022	August 2022
	Units	2022 average	maximum	average	maximum
Total Aluminum (Al)	ug/L	60.18	83.10	27.18	44.70
Total Arsenic (As)	ug/L	0.18	0.23	0.24	0.35
Total Boron (B)	ug/L	19.45	21.00	21.40	25.00
Total Cadmium (Cd)	ug/L	<0.005	<0.005	0.005*	0.01
Total Cobalt (Co)	ug/L	0.10	0.10	0.16*	0.25
Total Copper (Cu)	ug/L	1.71	2.97	1.46	2.84
Total Iron (Fe)	ug/L	149	167	931	3580
Total Lead (Pb)	ug/L	0.46	1.46	0.55	1.74
Total Manganese (Mn)	ug/L	26.74	28.70	123.22	411.00
Total Mercury (Hg)	ug/L	<0.005	<0.005	<0.005	<0.005
Total Molybdenum (Mo)	ug/L	0.19	0.23	0.18	0.23
Total Selenium (Se)	ug/L	0.08	0.12	0.077*	0.10
Total Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01
Total Zinc (Zn)	ug/L	4.1*	8.60	6.02*	26.30
*average values calculated using less than values i.					
are an overestimate					

Turbidity (N	TUs)		
	SWMP03-1M	SWMP03-5M	SWMP03-10M
01-Feb-22		1.5	
08-Feb-22		1.4	
15-Feb-22		1.25	
22-Feb-22		1.43	
28-Feb-22		1.38	
02-Aug-22		1.37	
09-Aug-22		1.39	
15-Aug-22	1.11	1.23	3.08
23-Aug-22		1.44	
29-Aug-22		1.4	

Table 5.4 Enos Lake Turbidity data for 2022

5.3 Iron and Manganese

Both iron and manganese follow different trends than other metals in Enos Lake. During the spring, when the lake is isothermal and oxygen is plentiful, manganese and iron concentrations remain relatively low, similar at all depths and well below BC water quality guidelines. During the summer, both iron and manganese accumulate at depth (Table 5.5). For example, in August 2022, total iron at 10 meters averaged 40 to 50 times higher than that found at 1 or 5 meters. Similarly, total manganese at 10 meters averaged 8 to 11 times higher than that measured at 1 or 5 meters. While manganese continued to meet the BC guidelines, total iron at depth in both 2017 and 2022 did not.

The increase of both iron and manganese in the hypolimnion during the summer is driven by the lack of oxygen and subsequent reducing conditions. Under aerobic conditions, phosphate (PO4 ³⁻) is adsorbed or precipitated with ferric (Fe³⁺) iron oxyhydroxides, drawing both phosphorus and iron into the sediment. To a lesser extent, manganese can also play a role in phosphorus retention in the sediment. However, during the summer in Enos Lake, the hypolimnion is virtually anoxic which subsequently releases phosphorus, as well as iron and manganese, into the deeper waters below the thermocline. In the fall, when the thermocline once again breaks down and the hypolimnion oxygen is replenished, much of the phosphorus and iron would re-adsorb or precipitate out, and subsequently return to the sediment of Enos Lake.

Total Metals by ICPMS - at SWMP03	Units	1 meter		5 meters		10 meters	
	1	average	maximum	average	maximum	average	maximum
March 2017							
dissolved manganese	ug/L	24	27	24	28	24	28
dissolved iron	ug/L	112	120	112	120	111	118
August 2017							
dissolved manganese	ug/L	<1	<1	13	58	572	726
dissolved iron	ug/L	13.9	16.1	146	167	980	1420
February 2022							
total manganese	ug/L	26	27	27	28	27	29
total iron	ug/L	147	162	149	167	152	163
August 2022							
total manganese	ug/L	30	39	43	59	330	411
total iron	ug/L	59	71	72	90	2946	3580

Table 5.5 Summary of Iron and Manganese data for Enos Lake

5.4 Zinc

Zinc concentrations generally met the BC water quality guideline, with one possible exception. In March 2017, the average dissolved zinc level of 8.4 ug/L was just above the total zinc guideline of 7.5 ug/l. However, 8 of the 12 values were <5 ug/L. A conservative approach was used to calculate the average in table 5.2 as each "less than value" was converted to 5 ug/L, overestimating the average. Another frequently used method of calculating the average when "less than values" are included is to divide the value in half i.e. <5 becomes 2.5 ug/L. This approach would reduce the average dissolved zinc to 6.5 ug/L, meeting the BC guideline. It is important to note that the zinc data for 2022 met the BC water quality guidelines.

6.0 PAHs in Sediment

PAHs are to be sampled in Enos Lake sediment from three locations (sites SWMP03, SWMP04 and SWMP06) every 5 years (Table 6.1). PAHs are indicators of hydrocarbon presence or contamination as well as general combustion products, including those of forest fires. BC sediment quality guidelines are in place for a number of PAHs, based on % organic carbon in the sediment. The sediment criteria listed in Table 6.2 are based on 1.0% organic carbon content. For sediment with an organic carbon content other than 1%, an appropriate criterion can be calculated by multiplying the recommended criterion by the actual organic carbon content of the sediment (e.g. if the sediment organic carbon is 3%, multiply the criteria in Table 6.2 by a factor of 3).

Many of the PAHs were found at detectable concentrations in 2017, and again at 03 in 2022. However, high moisture content in the samples collected in August 2022 at sites 04 and 06 resulted in substantially higher detection limits. Interpretation of the information is difficult as there is no organic carbon data available to calculate the appropriate sediment criteria for Enos Lake. While PAHs are present in the

sediment, their source is unknown. It is also unknown whether the deposition of the PAHs in the sediment is recent or historical.

August 29, 2017		SWMP06	SWMP04	SWMP03
Acenaphthene	mg/kg	<0.0058 (1)	0.0055 (1)	<0.0084 (1)
Acenaphthylene	mg/kg	<0.0058 (1)	<0.0051 (1)	<0.0084 (1)
Anthracene	mg/kg	<0.012 (1)	0.012 (1)	0.039 (1)
Benzo(a)anthracene	mg/kg	<0.012 (1)	<0.010 (1)	0.022 (1)
Benzo(a)pyrene	mg/kg	<0.012 (1)	0.012 (2)	0.031 (2)
Benzo(b)fluoranthene	mg/kg	0.023 (2)	0.044 (1)	0.076 (1)
Benzo(g,h,i)perylene	mg/kg	<0.023 (1)	0.046 (1)	0.091 (1)
Benzo(k)fluoranthene	mg/kg	<0.012 (1)	0.014 (1)	0.028 (1)
Chrysene	mg/kg	0.030 (1)	0.015 (1)	0.041 (1)
Dibenz(a,h)anthracene	mg/kg	<0.0058 (1)	0.0055 (2)	<0.0084 (1)
Fluoranthene	mg/kg	0.051 (1)	0.067 (1)	0.11 (1)
Fluorene	mg/kg	0.021 (2)	0.011 (1)	<0.017 (1)
Indeno(1,2,3-cd)pyrene	mg/kg	<0.023 (1)	0.033 (1)	0.067 (1)
2-Methylnaphthalene	mg/kg	<0.012 (1)	<0.010 (1)	<0.017 (1)
Naphthalene	mg/kg	<0.012 (1)	<0.010 (1)	<0.017 (1)
Phenanthrene	mg/kg	0.030 (2)	0.037 (2)	0.041 (2)
Pyrene	mg/kg	0.035 (1)	0.045 (1)	0.098 (1)
High Molecular Weight PAH's	mg/kg	0.14	0.3	0.61
Low Molecular Weight PAH's	mg/kg	<0.58	<0.51	<0.84
Total PAH	mg/kg	<0.58	<0.51	<0.84

Table 6.1 Summary of PAH data for sediment samples in Enos Lake

RDL = Reportable Detection Limit

(1) Detection limits raised due to high moisture content, sample contains => 50% moisture.

(2) Qualifying ion outside of acceptance criteria

Results are tentatively identified and potentially biased high

In addition, detection limits raised due to high moisture content, sample contains => 50% moisture.

		SWMP06	SWMP04	SWMP03
August 15, 2022				
Acenanhthene	mg/kg	<0.050	<0.050	<0.164
Acenaphthylene	mg/kg	<0.050	<0.050	<0.164
Acridine	5. 5	<0.050	<0.050	<0.164
Anthracene	mg/kg	<0.050	<0.050	<0.164
Benzo(a)anthracene	mg/kg	<0.050	<0.050	0.168
Benzo(a)pvrene	mg/kg	<0.050	<0.050	0.268
Benzo(b+j)fluoranthene		<0.050	<0.050	0.575
Benzo(b+j+k)fluoranthene		<0.075	<0.075	0.575
Benzo(q,h,i)perylene	mg/kg	<0.050	<0.050	0.568
Benzo(k)fluoranthene	mg/kg	<0.050	<0.050	<0.164
Chrysene	mg/kg	<0.050	<0.050	0.187
Dibenz(a,h)anthracene	mg/kg	<0.050	<0.050	<0.164
Fluoranthene	mg/kg	<0.050	<0.050	0.48
Fluorene	mg/kg	<0.050	<0.050	<0.164
Indeno(1,2,3-cd)pyrene	mg/kg	<0.050	<0.050	0.537
methylnaphthalene, 1+2-		<0.075	<0.075	<0.232
methylnaphthalene, 1-		<0.050	<0.050	<0.164
methylnaphthalene, 2-	mg/kg	<0.050	<0.050	<0.164
naphthalene	mg/kg	<0.050	<0.050	<0.164
phenanthrene	mg/kg	<0.050	<0.050	0.196
pyrene	mg/kg	<0.050	<0.050	0.434
quinoline		<0.050	<0.050	<0.164
B(a)P total potency equivalents		<0.065	<0.065	0.494
PAHs, total (BC Sched 3.4)	mg/kg	<0.20	<0.20	1.73
PAHs, total (EPA 16)	mg/kg	<0.20	<0.20	3.41
Surrogate Recovery (%)				
acridine-d9	%	83.5	88.9	86.5
chrysene-d12	%	89	89.5	88.9
naphthalene-d8	%	78.3	81.5	80.1
phenanthrene-d10	%	79.8	83.4	82.6

DLHM HTD Detection Limit Adjusted: Sample has high moisture content. Hold time exceeded for re-analysis or dilution, but initial testing was conducted within hold time.

Table 6.2 BC Sediment Quality Criteria (mg/kg)

Sediment Threshold - Max. Approved (BCMOECCS) based on 1% carbon				
Acenaphthene	0.15 (No Effect)			
Acridine	1 (No Effect)			
Anthracene	0.6 (No Effect)			
Benzo(a)anthracene	0.2 (No Effect)			
Benzo(a)pyrene	0.06 (No Effect)			
Fluoranthene	2 (No Effect)			
Fluorene	0.2 (No Effect)			
naphthalene	0.01 (No Effect)			
phenanthrene	0.04 (No Effect)			

7.0 Recommendations

The increased Secchi depth data collection should be continued.

Continue performing a check on field data by repeating the field data collection as the probes are brought back up to the surface. This is a particularly useful check on slow responding probes as they age or foul. The additional data collection by BCLSS volunteers proved to be useful in the interpretation of the 2022 data and if possible, should be repeated.

Future monitoring of metals in Enos Lake (every 5 years) should include dissolved organic carbon (once per 5 week data set at each depth) and dissolved copper to allow a more thorough assessment and use of the biotic ligand model, as per the BC water quality guidelines.

As noted by Nordin (2017), a water budget for Enos Lake is needed, as it would be useful over the longer term in the support of watershed management planning. PGL (2016) reported that 12 ha of the watershed area of 235 ha had been developed. Further updates on the area's development within the watershed are needed, including data on impervious surfaces. It may also be time to begin basic periodic sampling of the main inflows into Enos Lake to assess turbidity and total suspended solids, particularly following prolonged dry periods and during storm events. Simply limiting turbidity and total suspended solids in surface inputs to the lake is an important fundamental step in protecting Enos Lake water quality.

8.0 Acknowledgements

This document has been prepared as a contract for the BC Conservation Foundation. The conclusions, opinions and any other information in this report represent the author's best professional judgement based on the information available at the time of its completion.

9.0 References

PGL Environmental Consultants. 2016. *Enos Lake Protection and Monitoring Program. Prepared for FW Enterprises Ltd. c/o Seacliff Properties.* PGL file 4675-01.01 30 p + figures and appendix.

British Columbia Ministry of Environment and Climate Change Strategy. 2021. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture - Guideline Summary. Water Quality Guideline Series, WQG-20. Prov. B.C., Victoria B.C

Deniseger, J., 2021. *Enos Lake Protection and Monitoring Program: Review of 2018 Water Quality Data.* 16 p.

Deniseger, J., 2020. *Enos Lake Protection and Monitoring Program: Review of 2018 Water Quality Data.* 14 p.

Deniseger, J., 2019. *Enos Lake Protection and Monitoring Program: Review of 2018 Water Quality Data.* 13 p.

Deniseger, J., 2018. *Enos Lake Protection and Monitoring Program: Review of 2018 Water Quality Data.* 10 p.

Nordin, R., 2017. *Enos Lake Protection and Monitoring Program: Review of 2017 Water Quality Data*. 23 p.

Appendix 1

a) Dissolved Oxygen field profile data check

Appendix 1 c) Redox field profile data check

Profile - Site SWMP-03							
	2/15/2022	5/16/2022	8/15/2022	11/21/2022			
Depth (m)	Redox (mV)	Redox (mV)	Redox (mV)	Redox (mV)			
0.5	265.4	173.2	157.9	144.3			
1	262.6	175.7	156.5	144.5			
2	257.2	175.4	154.9	146.0			
3	249.5	174.9	155.7	146.2			
4	246.8	174.9	156.4	147.0			
4.5			157.8				
5	244.9	171.6	158.5	147.2			
5.5			158.3				
6	243.1	177.5	157.9	147.8			
6.5			158.1				
7	241.1.	176.9	157.8	148.1			
8	239.9	175.7	150.1	149.1			
9	238.9	175.0	131.9	149.0			
10	236.2	174.1	105.5	150.1			
11	234.8	170.4	73.4	150.2			
12		159.4					

Enos Lake redox potential profiles for 2022 (limited to data collected on the "way down")

Appendix 3 – Additional figures

Total Phosphorous

Figure A3.1: Mean Total Phosphorous across all depths, 2017-2022.

Figure A3.2: Total Phosphorous over time at 1, 5, and 10 m depths, 2017-2022.

Figure A3.3: Mean Total Phosphorous at 1 m depth only, 2017-2022.

Figure A3.4: Mean Total Phosphorous at 5 m depth only, 2017-2022.

Figure A3.5: Mean Total Phosphorous at 9-10 m depths only, 2017-2022.

Figure A3.6: Mean Total Phosphorous in first quarter, 2017-2022.

Figure A3.7: Mean Total Phosphorous in second quarter, 2017-2022.

Figure A3.8: Mean Total Phosphorous in third quarter, 2017-2022.

Figure A3.9: Mean Total Phosphorous in fourth quarter, 2017-2022.

Dissolved Orthophosphate

Figure A3.10: Orthophosphate over time at 1, 5, and 10 m depths, 2017-2022.

Chlorophyll-a

Figure A3.11: Mean Chlorophyll-a across all depths, 2017-2022.

Figure A3.12: Chlorophyll-a over time at 1, 5, and 10 m depths, 2017-2022.

* Sample destroyed

Appendix 4 – Field data

1st Quarter - 1st Site Visit Date: Feb 01 2022 Time: 10:20 Crew : TR, Chris Objectives: Sampling for metals, hardness, TSS, turbidity (5x in 30 days) Weather: light cloud, overcast Air Temp: 5.8°C Surface Temp: 4.4°C 1.25m Secchi: 1.35m Staff Gauge: 0.935m @ 10:20

Site SWMP-03

Depth (m)	Time	Temp. (°C)	рН
1	10:40	4.1	6.48
1 (rep)	10:43	4.1	6.48
5	10:48	4.1	6.55
10	10:54	4.1	6.63

WQ Samples collected 10:40am - 11:00am

Turbidity (TSS) - 5 m Total metals/Hardness (plastic) - 1, 5, 10m Total Hg (glass) - 1, 5, 10m

	Hardness	TSS (mg/L)	Turbidity (NTU)
1m	42.2	-	-
1m rep	42.8	-	-
5m	42.0	<3.0	1.50
10m	42.0	-	-

	1st Quarter	2nd Site Visit
Date:	Feb 08 2022	
Time:	9:50	
Crew :	TR, AA	
Objectives:	Sampling for metals, ha	rdness, TSS, turbidity (5x in 30 days)
Weather:	overcast, light breeze, h	int of rain
Air Temp:	6.4°C	
Surface Temp:	5.0°C	
Secchi:	2.27m	
	2.30m	
Staff Gauge:	0.915m	@ 10:00

Site SWMP-03

Depth (m)	Time	Temp. (°C)	рН
1	10:00	4.6	6.62
5	10:05	4.2	6.66
5 (rep)	10:08	4.2	6.66
10	10:15	4.1	6.66

WQ Samples collected 10:00am - 10:30am

Turbidity (TSS) - 5 m Total metals/Hardness (plastic) - 1, 5, 10m Total Hg (glass) - 1, 5, 10m

	Hardness	TSS (mg/L)	Turbidity (NTU)
1m	41.1	-	-
5m	41.5	<3.0	1.40
5m rep	41.7	-	-
10m	41.7	-	-

1st Quarter Sampling

Date:	Feb 15 2022	
Time:	10:15	
Crew :	TR, DS	
Objectives:	Sampling for metals, hardnes	s, TSS, turbidity (5x in 30 days); water profile
Weather:	overcast, light breeze (ripple	s on surface); sun appeared at 12:00pm
Air Temp:	~7°C	
Surface Temp:	~5°C	
Secchi	1.82	1.785 m
Seccili.	1.75	
Staff Gauge:	0.02m	@ 10∙/10

Staff Gauge:	0.92m	@ 10:40				
Profile - Site SV	(Profile for the way down)					
Depth (m)	Temp. (°C)	D.O. (mg/L)	D.O. (%)	Sp.Con. (µS/cm)	рН	Redox (mV)
0.5	5.0	12.92	101.7	122.8	5.67	265.4
1	5.0	12.26	96.0	122.8	5.87	262.6
2	5.0	12.26	95.9	122.7	6.18	257.2
3	4.8	12.05	94.0	122.8	6.43	249.5
4	4.7	12.38	96.3	122.7	6.49	246.8
5	4.7	11.86	92.2	122.9	6.52	244.9
6	4.7	11.90	92.4	122.9	6.57	243.1
7	4.7	11.93	92.7	122.8	6.60	241.1
8	4.6	12.01	93.0	122.9	6.62	239.9
9	4.5	10.96	84.7	123.4	6.61	238.9
10	4.5	11.27	86.9	123.8	6.6	236.2
11	4.4	11.24	86.7	123.9	6.59	234.8

Profile - Site SW	(Profile for the way up)					
Depth (m)	Temp. (°C)	D.O. (mg/L)	D.O. (%)	Sp.Con. (µS/cm)	рН	Redox (mV)
11	4.5	11.04	85.3	124.5	6.51	144.9
10	4.5	11.30	87.3	123.7	6.54	148.8
9	4.5	11.44	88.4	123.2	6.59	151.4
8	4.5	11.50	89.0	123.3	6.65	154.7
7	4.6	11.80	91.7	122.8	6.69	158.3
6	4.7	12.26	95.3	122.8	6.75	160.9
5	4.7	12.18	94.8	122.8	6.77	161.1
4	4.9	11.83	92.4	122.9	6.77	162.5
3	5.0	12.01	94.2	122.8	6.85	161.0
2	5.0	12.10	94.8	122.8	6.86	161.6
1	5.0	12.31	96.5	122.8	6.87	162.0
0.5	5.1	12.33	96.9	122.8	6.88	162.3

Felt bottom at 11.5 m.

1st Quarter - 4th Site Visit

Date:	Feb 22 2022	
Time:	9:45	
Crew :	AA, TN	
Objectives:	Sampling for metals, hardr	ness, TSS, turbidity (5x in 30 days)
Weather:	sunny, cold	
Air Temp:	1°C	
Surface Temp:	5.4°C	
Secchi	2.117m	
Secon.	2.139m	
Staff Gauge:	0.91m	@ 10:05

Site SWMP-03

Depth (m)	Time	Temp. (°C)	pH*
1	10:47	5.3	
1 (rep)	10:49	5.3	
5	10:50	5.2	
10	10:54	5.2	

WQ Samples collected 10:45am - 11:10pm Turbidity

(TSS) - 5 m Total metals/Hardness (plastic) - 1, 5, 10m Total Hg (glass) - 1, 5, 10m

*pH probe not calibrated

	Hardness	TSS (mg/L)	Turbidity (NTU)
1m	43.9	-	-
1m rep	44.8	-	-
5m	44.1	<3.0	1.43
10m	44.0	-	-

1st Quarter - 5th Site Visit

Date:	Feb 29 2022	
Time:	9:45	
Crew :	TR, PL	
Objectives:	Sampling for metals, hard	ness, TSS, turbidity (5x in 30 days)
Weather:	overcast, breezy; it has rai	ned the past few days and more to come
Air Temp:	8.0°C	
Surface Temp:	5.3°C	
Secchi:	1.78m	
Staff Gauge:	0.945m	@ 10:15

Site SWMP-03 Depth (m) Time Temp. (°C) рΗ 10:30 5.0 6.09 1 5 10:35 5.0 6.67 5.0 5 (rep) 10:37 6.67 10 10:41 5.0 6.76

WQ Samples collected 10:30am - 11:00pm Turbidity (TSS) - 5 m Total metals/Hardness (plastic) - 1, 5, 10m Total Hg (glass) - 1, 5, 10m

	Hardness	TSS (mg/L)	Turbidity (NTU)
1m	43.8	-	-
5m	44.1	<3.0	1.38
5m rep	43.5	-	-
10m	43.3	-	-

2nd Quarter Sampling May 16 2022 Date: Notes: Time: 10:45 Crew : TR, KS all calibrated this morning. Sampling for standard water profile & productivity Objectives: Weather: Sunny, overcast, light breeze. Rained heavily yesterday up than way down. Air Temp: ~16°C - Redox results confusing, sent for Surface Temp: ~13°C consult 2.8 2.77 m Secchi: 2.74 morning. Staff Gauge: 0.92m @ 11:45

Profile - Site SM (Profile for the way dow

- pH, DO, conductivity and redox probes
- pH results look more suitable on way
- New DO membrane cap installed this
- Results are similar to May 2021

FIOTHE - Site SW	Frome - Site Sw(Frome for the way down)					
Depth (m)	Temp. (°C)	D.O. (mg/L)	D.O. (%)	Sp.Con. (µS/cm)	рН	Redox (mV)
0.5	12.6	10.0	94.2	127.0	6.10	173.2
1	12.5	10.2	95.6	127.1	6.34	175.7
2	12.5	10.3	96.5	126.8	6.52	175.4
3	12.4	10.2	95.1	126.9	6.67	174.9
4	12.2	10.2	94.8	127.0	6.77	174.9
5	10.3	11.0	97.2	125.8	6.85	171.6
6	9.2	10.1	88.3	126.0	6.69	177.5
7	8.2	5.3	45.1	128.8	6.42	176.9
8	7.7	3.6	30.2	130.2	6.35	175.7
9	7.5	2.8	23.9	131.0	6.30	175.0
10	7.5	2.2	18.7	131.4	6.27	174.1
11	7.4	1.0	8.3	133.6	6.24	170.4
12 (bottom)	7.3	0.6	4.8	135	6.24	159.4

Profile - Site SV	Profile - Site SW (Profile for the way up)					
Depth (m)	Temp. (°C)	D.O. (mg/L)	D.O. (%)	Sp.Con. (µS/cm)	рН	Redox (mV)
12	7.4	0.7	5.9	135.1	6.28	136.3
11	7.4	0.9	7.3	133.0	6.31	129.4
10	7.4	1.5	12.1	132.0	6.37	125.2
9	7.5	2.3	19.1	131.3	6.41	124.5
8	7.6	2.9	24.1	130.9	6.47	123.1
7	8.3	5.6	46.9	128.5	6.55	123.2
6	9.1	9.7	84.0	126.3	6.90	117.8
5	10.3	10.4	92.4	125.9	7.04	117.3
4	12.1	10.1	94.1	127.4	7.40	114.1
3	12.4	10.2	95.6	127.4	7.46	115.3
2	12.5	10.0	94.5	127.4	7.50	117.4
1	12.6	10.0	94.6	127.5	7.56	117.2
0.5	12.7	9.5	90.0	127.4	7.55	118.9

Felt bottom at 12 m. Likely disturbed plume of sediment when probe hit bottom.

3rd Quarter - 1st Site Visit

Date:	August 2, 2022
Time:	10:15 - 12:45
Crew :	AA, HT
Objectives:	Sampling for metals, hardness, TSS, turbidity & E. coli (5x in 30 days)
Weather:	Sunny, light breeze
Air Temp:	19°C
Surface Temp:	25.6°C
Secchi:	2.91 m
Staff Gauge:	0.81 m @ 11:30

Site SWMP-03

Depth (m)	Temp. (°C)	DO (%)	DO (mg/L)	pH*
1	25.6	88.5	7.26	8.07
5	14.7	75.5	7.61	7.13
10	7.8	3.6	0.42	6.88

WQ Samples collected 10:37am - 11:15am

Turb & TSS - 5 m; Total met./hardness - 1, 5, 10 m (rep 5m) @ SWMP-03

E. coli - 1m @ SWMP 03, 04, 06

COC 20-982083

SWMP-04	E. coli	Total coliforms
1m	<1	260
SWMP-06	E. coli	Total coliforms
1m	1	2420

SWMP-03	Total Hardness	TSS (mg/L)	Turbidity (NTU)	E. coli	Total coliforms
1m	45.8	-	-	<1	261
5m	43.0	<3.0	1.37		
5m rep	44.6				
10m	46.5				

		3rd Quarter - 2nd Site Visit
Date:	Aug 09 2022	
Time:	10:00-12:30	
Crew :	TR, AB	
Objectives:	Sampling for r	netals, hardness, TSS, turbidity & E. coli (5x in 30 days)
Weather:	Sunny, light cl	oud in south
Air Temp:	23.1°C	
Surface Temp:	23.3°C	
Secchi:	3.20 m	
Staff Gauge:	0.765 m	@ 10:00

Staff Gauge: 0.765 m

Site SWMP-03

Depth (m)	Temp. (°C)	DO (%)	DO (mg/L)	рН
1	23.3	94.5	8.12	7.86
5	15.8	78.8	7.76	6.95
10	7.8	3.5	0.41	6.71

WQ Samples collected 10:15am - 11:00am

Turbidity (TSS) - 5 m Total metals/Hardness - 1, 5, 10 m (replic E. coli - 1m @ SWMP 03, 04, 06

CH40 4D 02	Total Housins on	TCC (Touch tables (NITU)
1m	2		
SWMP-06	E. coli		
1m	1		
SWMP-04	E. coli		COC 20-992050

SWMP-03	Total Hardness	TSS (mg/L)	Turbidity (NTU)	E. coli
1m	48.3	-	=	1
5m	45.7	3.5	1.39	
10 m	47.7			_
10 m rep	46.8			

3rd Quarter Sampling

August 15, 2022
10:30 - 14:30
TR, AB
Sampling for metals, hardness, TSS, turbidity, E. coli (5x in 30 days) & full quarterly profile
Sunny, hot
22.5°C
23.4°C
2.48 m
0.718 m @ 11:00

Profile - Site SWM	(Profile for the way dov	vn)	12:00-12:30			
Depth (m)	Temp. (°C)	D.O. (mg/L)	D.O. (%)	Sp.Con. (µS/cm)	рН	Redox (mV)
0.5	24.0	7.98	95.8	141.0	8.08	157.9
1	23.5	7.96	93.8	141.0	8.12	156.5
2	23.3	7.08	82.7	140.8	8.10	154.9
3	23.0	6.79	78.9	140.9	7.90	155.7
4	21.1	7.61	86.2	137.3	7.60	156.4
4.5	17.4	6.97	73.0	131.7	7.04	157.8
5	15.4	6.33	63.6	130.9	6.94	158.5
5.5	13.1	6.06	57.5	131.5	6.89	158.3
6	12.1	3.58	33.0	132.7	6.82	157.9
6.5	10.2	1.16	10.5	132.6	6.72	158.1
7	9.6	0.20	1.8	134.5	6.72	157.8
8	8.6	0.10	0.8	144.0	6.72	150.1
9	8.2	0.08	0.7	151.2	6.74	131.9
10	7.9	0.08	0.6	155.5	6.75	105.5
11	7.8	0.07	0.5	156.4	6.75	73.4

Profile - Site SWM	(Profile for the way up)		12:30-13:00			
Depth (m)	Temp. (°C)	D.O. (mg/L)	D.O. (%)	Sp.Con. (µS/cm)	рН	Redox (mV)
11	7.8	0.06	0.5	157.4	6.75	-77.6
10	7.9	0.05	0.4	155.3	6.74	-94.6
9	8.0	0.06	0.5	152.4	6.73	-103.8
8	8.6	0.05	0.4	144.6	6.70	-104.0
7	9.4	0.06	0.5	134.8	6.67	-106.3
6.5	10.5	1.62	14.5	132.0	6.69	-93.0
6	11.3	2.69	24.8	131.0	`6.73	-72.1
5.5	13.1	4.75	45.7	130.3	6.83	-42.6
5	15.0	5.50	54.5	128.2	6.92	≈6.2
4.5	17.3	6.31	65.7	132.1	7.01	≈5.4
4	21.0	7.80	89.9	136.1	7.59	12.8
3	22.9	7.78	90.8	139.5	7.97	15.4
2	23.3	7.77	92.5	140.7	8.04	15.3
1	23.6	7.67	90.3	140.8	8.08	20.8
0.5	23.8	7.55	91.0	141.1	8.05	23.3

Felt bottom around 11.3 m... Likely disturbed big plume of sediment when probe hit bottom, ORP very affected Person and dogs seen swimming near SWMP 04

3rd Quarter - 4th Site Visit			
Date: Time:	August 23, 2022 10-13:00	Notes:	
Crew : Objectives:	TR, JD Sampling for metals, bardness, TSS, turbidity & F, coli (5x in 30 days)	- Still visible bloom. Quite	
Weather:	Breezy (rippled surface), sunny, hot.	- Water from	
Air Temp: Surface Temp:	23 °C 24.6 °C	10m v stinky - PL out doing	
Secchi:	2.32 m	secchi	

Site SWMP-03

Depth (m)	Temp. (°C)	DO (%)	DO (mg/L)	pН	Sp Con	ORP
1	24.5	94.0	7.79	8.03	138.20	163.8
5	16.0	36.6	3.57	6.69	128.60	169.8
10	7.9	4.4	0.52	6.77	153.20	-33.7

WQ Samples collected 11:45 - 12:40 pm

Turb & TSS - 5 m; Total met./hardness - 1, 5, 10 m (rep 1m) @ SWMP-03

E. coli - 1m @ SWMP 03, 04, 06

COC 20-982086

SWMP-04	E. coli	Total coliforms
1m	9	-
SWMP-06	E. coli	Total coliforms
1m	7	-

SWMP-03	Total Hardness	TSS (mg/L)	Turbidity (NTU)	E. coli	Total coliforms
1m	44.9	-	-	1	-
1m rep	44.6	-	-		
5m	42.6	<3.0	1.44		
10m	44.4			-	

3rd Quarter - 5th Site Visit				
Date:	August 29, 2022			
Time:	10-12:30			
Crew :	TR, HT			
Objectives:	Sampling for metals, hardness, TSS, turbidity & E. coli (5x	in 30 days)		
Weather:	Sun/cloud, warm, light breeze from south. No rain for sev	veral weeks. Cool overnight past few days.		
Air Temp:	23 °C	Notos		
Surface Temp:	23.3 °C	- Still visible		
Secchi:	2.37 m	bloom Water		
Staff Gauge:	0.635 m @ 10:58 am	from 10m v stinky		

Site SWMP-03

Depth (m)	Temp. (°C)	DO (%)	DO (mg/L)	pН
1	23.2	84.0	7.13	7.98
5	15.7	32.7	3.22	6.74
10	8.1	5.30	0.62	6.70

WQ Samples collected 10:15am - 11:00am

Turb & TSS - 5 m; Total met./hardness - 1, 5, 10 m (rep 5m) @ SWMP-03

SWMP-04	E. coli	Total coliforms
1m	8	261
SWMP-06	E. coli	Total coliforms
0.5m	6	236

COC 20-982085	

E. coli - 1m @ SWMP 03, 04 0.5m @ SWMP-06

SWMP-03	Total Hardness	TSS (mg/L)	Turbidity (NTU)	E. coli	Total coliforms
1m	47.5	-	-	1	75
5m	44.3	<3.0	1.4		
5m rep	45.4			_	
10m	47.4				

Date:	Nov. 21, 2022
Time:	10:30-13:00
Crew :	TR, EF
Objectives:	Sampling for standard water profile & productivity
Weather:	Light breeze, cloudy/overcast and cool
Air Temp:	Approx. 8 C
Surface Temp:	6.5 °C
Secchi:	2.16 m
Staff Gauge:	0.48 m @ 11:00

New DO membrane probe this morning Lake very low for this time of year

Profile - Site SWI	(Profile for the way down)	11:15-11:45				
Depth (m)	Temp. (°C)	D.O. (mg/L)	D.O. (%)	Sp.Con. (µS/cm)	рН	Redox (mV)
0.5	6.5	8.66	70.4	136.8	7.28	144.3
1	6.3	9.11	73.8	136.7	7.28	144.5
2	6.3	8.88	72.0	136.9	7.25	146.0
3	6.3	8.50	69.5	136.8	7.24	146.2
4	6.3	9.13	73.9	137.0	7.24	147.0
5	6.3	8.40	68.0	137.0	7.24	147.2
6	6.2	8.45	68.3	137.1	7.23	147.8
7	6.2	8.43	68.4	137.1	7.21	148.1
8	6.1	8.42	67.8	137.1	7.20	149.1
9	6.0	8.41	67.6	137.1	7.22	149.0
10	6.0	8.42	67.7	137.1	7.21	150.1
11	6.0	8.19	65.9	137.6	7.21	150.2

Profile - Site SWI	(Profile for the way up)	11:45-12:30				
Depth (m)	Temp. (°C)	D.O. (mg/L)	D.O. (%)	Sp.Con. (µS/cm)	рН	Redox (mV)
11	6.1	8.21	66.1	152.1	6.92	150.5
10	6	8.43	67.8	137.1	7.2	144.8
9	6	8.72	70.3	137	7.2	144.2
8	6.1	8.52	68.6	137	7.22	141.7
7	6.1	8.45	68.2	137	7.22	141.6
6	6.2	8.36	67.4	136.9	7.22	141.9
5	6.3	9.01	73	136.9	7.22	143.6
4	6.3	8.54	69.1	136.8	7.23	143.1
3	6.3	8.8	70.9	136.9	7.24	143.5
2	6.3	8.77	70.9	136.9	7.26	143.4
1	6.3	8.84	71.8	136.8	7.27	143.6
0.5	6.5	8.76	71.4	136.7	7.27	143.9

Felt bottom at 11.3 m